DATA BASE
MANAGEMENT SYSTEM

BCA 202

SELF LEARNING MATERIAL

DIRECTORATE
OF DISTANCE EDUCATION

SWAMI VIVEKANAND SUBHARTI UNIVERSITY
MEERUT — 250 005,
UTTAR PRADESH (INDIA)

SLM Module Developed By :

Author:

Reviewed by :

Assessed by:

Study Material Assessment Committee, as per the SVSU ordinance No. VI (2)

Copyright © Gayatri Sales

DISCLAIMER

No part of this publication which is material protected by this copyright notice may be reproduced
or transmitted or utilized or stored in any form or by any means now known or hereinafter invented,
electronic, digital or mechanical, including photocopying, scanning, recording or by any information
storage or retrieval system, without prior permission from the publisher.

Information contained in this book has been published by Directorate of Distance Education and has
been obtained by its authors from sources be lived to be reliable and are correct to the best of their
knowledge. However, the publisher and its author shall in no event be liable for any errors,
omissions or damages arising out of use of this information and specially disclaim and implied
warranties or merchantability or fitness for any particular use.

Published by: Gayatri Sales

Typeset at: Micron Computers Printed at: Gayatri Sales, Meerut.

DATA BASE MANAGEMENT SYSTEM
Unit - |
Overview of Database Management System

Elements of Database System, DBMS and its architecture, Advantage of DBMS
(including Data independence), Types of database users, Role of Database
administrator.

Unit - 1l
Data Models

Brief overview of Hierarchical and Network Model, Detailed study of Relational Model
(Relations, Properties, Key & Integrity rules), Comparison of Hierarchical, Network and
Relational Model ,CODD’s rules for Relational Model,E-R diagram.

Unit - [l
Normalization

Normalization concepts and update anomalies ,Functional dependencies,Multivalued
and join dependencies.

Normal Forms: (1 NF, 2 NF, 3NF, BCNF, 4NF, and 5NF)
Unit - IV
SQL

SQL Constructs, SQL Join: Multiple Table Queries, Build-in functions, Views and their
use, Overviews of ORACLE: (Data definition and manipulation)

Unit - V
Database Security, Integrity and Control

Security and Integrity threats, Defense mechanism, Integrity, Auditing and Control,
Recent trends in DBMS- Distributed and Deductive Database.

UNIT -1

Overview of Database Management System
Elements of Database System

Organizations produce and gather data as they operate. Contained in a database, data
is typically organized to model relevant aspects of reality in a way that supports
processes requiring this information. Knowing how this can be managed effectively is
vital to any organization.

What is a Database Management System (or DBMS)?

Organizations employ Database Management Systems (or DBMS) to help them
effectively manage their data and derive relevant information out of it. A DBMS is a
technology tool that directly supports data management. It is a package designed to
define, manipulate, and manage data in a database.

Some general functions of a DBMS:

Designed to allow the definition, creation, querying, update, and administration of
databases

Define rules to validate the data and relieve users of framing programs for data
maintenance

Convert an existing database, or archive a large and growing one

Run business applications, which perform the tasks of managing business processes,
interacting with end-users and other applications, to capture and analyze data

Some well-known DBMSs are Microsoft SQL Server, Microsoft Access, Oracle, SAP,
and others.

Components of DBMS

DBMS have several components, each performing very significant tasks in the database
management system environment. Below is a list of components within the database
and its environment.

Software

This is the set of programs used to control and manage the overall database. This
includes the DBMS software itself, the Operating System, the network software being
used to share the data among users, and the application programs used to access data
in the DBMS.

Hardware
Consists of a set of physical electronic devices such as computers, I/O devices, storage
devices, etc., this provides the interface between computers and the real world systems.

Data
DBMS exists to collect, store, process and access data, the most important component.
The database contains both the actual or operational data and the metadata.

Procedures

These are the instructions and rules that assist on how to use the DBMS, and in
designing and running the database, using documented procedures, to guide the users
that operate and manage it.

Database Access Language

This is used to access the data to and from the database, to enter new data, update
existing data, or retrieve required data from databases. The user writes a set of
appropriate commands in a database access language, submits these to the DBMS,
which then processes the data and generates and displays a set of results into a user
readable form.

Query Processor

This transforms the user queries into a series of low level instructions. This reads the
online user’s query and translates it into an efficient series of operations in a form
capable of being sent to the run time data manager for execution.

Run Time Database Manager

Sometimes referred to as the database control system, this is the central software
component of the DBMS that interfaces with user-submitted application programs and
queries, and handles database access at run time. Its function is to convert operations
in user’s queries. It provides control to maintain the consistency, integrity and security of
the data.

Data Manager
Also called the cache manger, this is responsible for handling of data in the database,
providing a recovery to the system that allows it to recover the data after a failure.

Database Engine

The core service for storing, processing, and securing data, this provides controlled
access and rapid transaction processing to address the requirements of the most
demanding data consuming applications. It is often used to create relational databases
for online transaction processing or online analytical processing data.

Data Dictionary
This is a reserved space within a database used to store information about the
database itself. A data dictionary is a set of read-only table and views, containing the

different information about the data used in the enterprise to ensure that database
representation of the data follow one standard as defined in the dictionary.

Report Writer

Also referred to as the report generator, it is a program that extracts information from
one or more files and presents the information in a specified format. Most report writers
allow the user to select records that meet certain conditions and to display selected
fields in rows and columns, or also format the data into different charts.

Great Performance through Effective DBMS

A company’s performance is greatly affected by how it manages its data. And one of the
most basic tasks of data management is the effective management of its database.
Understanding the different components of the DBMS and how it works and relates to
each other is the first step to employing an effective DBMS.

DBMS and its architecture

The design of a DBMS depends on its architecture. It can be centralized or
decentralized or hierarchical. The architecture of a DBMS can be seen as either single
tier or multi-tier. An n-tier architecture divides the whole system into related but
independent n modules, which can be independently modified, altered, changed, or
replaced.

In 1-tier architecture, the DBMS is the only entity where the user directly sits on the
DBMS and uses it. Any changes done here will directly be done on the DBMS itself. It
does not provide handy tools for end-users. Database designers and programmers
normally prefer to use single-tier architecture.

If the architecture of DBMS is 2-tier, then it must have an application through which the
DBMS can be accessed. Programmers use 2-tier architecture where they access the
DBMS by means of an application. Here the application tier is entirely independent of
the database in terms of operation, design, and programming.

Architecture

Database architecture uses programming languages to design a particular type of
software for businesses or organizations.Database architecture focuses on the design,
development, implementation and maintenance of computer programs that store and
organize information for businesses, agencies and institutions. A database architect
develops and implements software to meet the needs of users.

The design of a DBMS depends on its architecture. It can be centralized or decentralized
or hierarchical. The architecture of a DBMS can be seen as either single tier or multi-tier.
The tiers are classified as follows :

1. 1-tier architecture
2. 2-tier architecture
3. 3-tier architecture

4. n-tier architecture

1-tier architecture:

One-tier architecture involves putting all of the required components for a software
application or technology on a single server or platform.

1-Tier Architecture

Client Computers

File Server

1-tier architecture

Basically, a one-tier architecture keeps all of the elements of an application, including the
interface, Middleware and back-end data, in one place. Developers see these types of
systems as the simplest and most direct way.

2-tier architecture:

The two-tier is based on Client Server architecture. The two-tier architecture is like client
server application. The direct communication takes place between client and server.
There is no intermediate between client and server.

2-l1er Architecture

Client Computers

Clent Tir A

Database Tier
¥

Database Server

2-tier architecture

3-tier architecture:

A 3-tier architecture separates its tiers from each other based on the complexity of the
users and how they use the data present in the database. It is the most widely used
architecture to design a DBMS.

- Entity cut all the three

/ layers horizontally

Database

hhhﬂ
Presentation Business Logic Data Access
Layer Layer Layer

[Basic 3-Tire architecture]

This architecture has different usages with different applications. It can be used in web
applications and distributed applications. The strength in particular is when using this
architecture over distributed systems.

o Database (Data) Tier —

At this tier, the database resides along with its query processing languages. We also
have the relations that define the data and their constraints at this level.

e Application (Middle) Tier —

At this tier reside the application server and the programs that access the database.
For a user, this application tier presents an abstracted view of the database. End-
users are unaware of any existence of the database beyond the application. At the
other end, the database tier is not aware of any other user beyond the application

tier. Hence, the application layer sits in the middle and acts as a mediator between
the end-user and the database.

e User (Presentation) Tier —

End-users operate on this tier and they know nothing about any existence of the
database beyond this layer. At this layer, multiple views of the database can be
provided by the application. All views are generated by applications that reside in the
application tier.

n-tier architecture:

N-tier architecture would involve dividing an application into three different tiers. These
would be the

1. logic tier,
2. the presentation tier, and

3. the data tier.

It is the physical separation of the different parts of the application as opposed to the
usually conceptual or logical separation of the elements in the model-view-controller
(MVC) framework. Another difference from the MVC framework is that n-tier layers are
connected linearly, meaning all communication must go through the middle layer, which
is the logic tier. In MVC, there is no actual middle layer because the interaction is
triangular; the control layer has access to both the view and model layers and the model
also accesses the view; the controller also creates a model based on the requirements
and pushes this to the view. However, they are not mutually exclusive, as the MVC
framework can be used in conjunction with the n-tier architecture, with the n-tier being
the overall architecture used and MVC used as the framework for the presentation tier.

Normalization of Database:

Database Normalisation is a technique of organizing the data in the database.
Normalization is a systematic approach of decomposing tables to eliminate data
redundancy and undesirable characteristics like Insertion, Update and Deletion
Anamolies. It is a multi-step process that puts data into tabular form by removing
duplicated data from the relation tables.

10

https://msdn.microsoft.com/en-us/library/bb384398.aspx

Normalization is used for mainly two purpose,

« Eliminating reduntant(useless) data.

« Ensuring data dependencies make sense i.e data is logically stored.

Problem Without Normalization:

Without Normalization, it becomes difficult to handle and update the database, without
facing data loss. Insertion, Updation and Deletion Anamolies are very frequent if
Database is not Normalized.

Normalization Rule:

Normalization rule are divided into following normal form.

1. First Normal Form
2. Second Normal Form
3. Third Normal Form

4. BCNF

First Normal Form:

A database is in first normal form if it satisfies the following conditions:

o Contains only atomic values

« There are no repeating groups

An atomic value is a value that cannot be divided. For example, in the table shown
below, the values in the [Color] column in the first row can be divided into “red” and
“green”, hence [TABLE_PRODUCT] is not in 1NF.

11

A repeating group means that a table contains two or more columns that are closely
related. For example, a table that records data on a book and its author(s) with the
following columns: [Book ID], [Author 1], [Author 2], [Author 3] is not in 1NF because
[Author 1], [Author 2], and [Author 3] are all repeating the same attribute.

1st Normal Form Example

How do we bring an unnormalized table into first normal form? Consider the following
example:

TABLE FRODUCT

Froduct [D Color Frice
1 red, green 15.949
4 =1 fahty 234949
3 dregn 17.410
4 wellow, blue 4. 949
5 red 2899

This table is not in first normal form because the [Color] column can contain multiple
values. For example, the first row includes values “red” and “green.”

To bring this table to first normal form, we split the table into two tables and now we have
the resulting tables:

TABLE_PRODUCT_PRICE TABLE_PRODUCT_COLOR

Froduct D Price Froduct 1D Color
1 15.99 1 red
= 234949 1 green
3 17.50 2 wellow
4 9. .99 2 green
a 29 499 4 wellowr

4 blue
a red

12

Now first normal form is satisfied, as the columns on each table all hold just one value.
Second Normal Form:
A database is in second normal form if it satisfies the following conditions:

e ltisin first normal form

« All non-key attributes are fully functional dependent on the primary key

In a table, if attribute B is functionally dependent on A, but is not functionally dependent

on a proper subset of A, then B is considered fully functional dependent on A. Hence, in

a 2NF table, all non-key attributes cannot be dependent on a subset of the primary key.

Note that if the primary key is not a composite key, all non-key attributes are always fully
functional dependent on the primary key. A table that is in 1st normal form and contains

only a single key as the primary key is automatically in 2nd normal form.

2nd Normal Form Example

Consider the following example:

TABELE_PURCHASE_DETAIL

Custormer D store D Furchase Location
1 1 Los Angeles
1 3 San Francisco
2 1 Los Angeles
3 2 Mewe ' ork
4 3 San Francisco

This table has a composite primary key [Customer ID, Store ID]. The non-key attribute is
[Purchase Location]. In this case, [Purchase Location] only depends on [Store ID], which
is only part of the primary key. Therefore, this table does not satisfy second normal form.

13

To bring this table to second normal form, we break the table into two tables, and now
we have the following:

TAELE PURCHASE TAEBLE STORE
Custormer store 1D =tore 1D Furchase Location
|1D 1 1 Los Andeles
1 3 2 Mew Y ork
5 1 3 San Francisco

3 2
4 3

What we have done is to remove the partial functional dependency that we initially had.
Now, in the table [TABLE_STORE], the column [Purchase Location] is fully dependent
on the primary key of that table, which is [Store ID].

Third Normal Form:

A relation is in third normal form if it is in 2NF and no non key attribute is transitively
dependent on the primary key.

A bank uses the following relation:
Vendor(ID, Name, Account_No, Bank_Code_No, Bank)

The attribute ID is the identification key. All attributes are single valued (1NF). The table
is also in 2NF.

The following dependencies exist:

14

1. Name, Account_No, Bank_Code_No are functionally dependent on ID (ID — Name,
Account_No, Bank_Code_No)

2. Bank is functionally dependent on Bank_Code No (Bank_Code_ No — Bank)

The table in this example is in INF and in 2NF. But there is a transitive dependency
between Bank_Code_No and Bank, because Bank_Code_No is not the primary key of
this relation. To get to the third normal form (3NF), we have to put the bank name in a
separate table together with the clearing number to identify it.

BCNF:

BCNF was developed by Raymond Boyce and E.F. Codd; the latter is widely considered
the father of relational database design.

BCNF is really an extension of 3rd Normal Form (3NF). For this reason it is frequently
termed 3.5NF. 3NF states that all data in a table must depend only on that table’s
primary key, and not on any other field in the table. At first glance it would seem that
BCNF and 3NF are the same thing. However, in some rare cases it does happen that a
3NF table is not BCNF-compliant. This may happen in tables with two or more
overlapping composite candidate keys.

Advantage of DBMS (including Data independence)

The database management system has a number of advantages as compared to
traditional computer file-based processing approach. The DBA must keep in mind these
benefits or capabilities during databases and monitoring the DBMS.

The Main advantages of DBMS are described below.

Centralized Data Management: Large commercial databases may exist in two different
Topologies.

1. Centralized A centralized database (sometimes abbreviated CDB) is a
database that is located, stored, and maintained in a single location. This location
is most often a central computer or database system, for example a desktop or
server, or a mainframe computer. Users typically use an Internet connection and
network of computers to access a CDB. In most cases, a centralized database
would be used by an organization (e.g. a business company) or an institution
(e.g. a university). Banks, airlines, railways etc., tend to use centralized
databases.

2. Distributed Where the database is in many locations often where you have a
national or international company and customers tend to regularly interact with a

15

local branch. For example: Google uses a distributed DBMS to cater to users in
different geographic regions to dispense country/region specific information.

In both cases the database looks like one database the end-user cannot feel the
difference. Information stored in Centralized databases is accessible from a large
number of different points, which in turn creates a significant amount of advantages as
against other types of databases. Some of the important advantages are listed below:

1. Data integrity is maximized and data redundancy is minimized, as the single
storing place of all the data also implies that a given set of data only has one
primary record. This helps in maintaining data accurately and consistently, hence
enhancing data reliability.

2. Generally bigger data security, as the single data storage location implies that
there is only one possible place where the database can be attacked and sets of
data can be stolen or tampered with.

3. Better data preservation than the distributed type since data backup and
maintenance becomes easier and less time consuming.

Ease of use by the end-user due to the simplicity of a single database design.
Generally easier data portability and database administration.

More cost effective than other types of database systems as labor, power
supply and maintenance costs are all minimized.

7. Data kept in the same location is easier to be edited, updated, re-organized,
mirrored, or analyzed.

8. All the information can be accessed at the same time from the same location.
9. Updates to any given set of data are immediately received by every end-user.

Data Independence: In a database, the management system provides the interface
between the application programs and the data. Data independence refers to the
immunity of user applications to changes made in the data structure and organization or
storage. Physical data independence means the applications need not worry about how
the data are physically structured and stored. Applications should work with a logical
data model and declarative query language.

If major changes were to be made to the data, the application programs may need to be
rewritten. When changes are made to the data representation, the data maintained by
the DBMS is changed but the DBMS continues to provide data to application programs
in the previously used ways.

Data independence is the immunity of application programs to changes in storage
structures and access techniques. For example if we add a new attribute, change index
structure then in traditional file processing system, the applications are affected. But in a
DBMS environment these changes are reflected in the catalog. As a result the
applications are not affected. Data independence can be physical data independence or
logical data independence.

16

© Physical data independence is the ability to modify physical schema without
causing the conceptual schema or application programs to be rewritten. In effect,
it means that different kinds of user applications are able to interact with the data
irrespective of the structure of the data in the database.

© Logical data independence is the ability to modify the conceptual schema
without having to change the external schemas or application programs. Logical
Data independence means if we add some new columns or remove some
columns from table then the user view and programs will not change.

Data independence and operation independence together define Data Abstraction.

Data Inconsistency: Data inconsistency means different copies of the same data will
have different values. For example, consider a person working in a branch of an
organization.

The details of the person will be stored both in the branch office as well as in the main
office. If that particular person changes his address, then the change of address has to
be maintained in the main as well as the branch office. For example the change of
address is maintained in the branch office but not in the main office, then the data about
that person is inconsistent.

DBMS is designed to have data consistency. Some of the qualities achieved in DBMS
are:

Data redundancy — Reduced in DBMS.

Data independence — Activated in DBMS.

Data inconsistency — Avoided in DBMS.
Centralizing the data — Achieved in DBMS.

Data integrity — Necessary for efficient Transaction.

o 0k~ W RE

Support for multiple views — Necessary for security reasons.
Explanation of Terms:

€© Data redundancy means duplication of data. Data redundancy will occupy
more space hence it is not desirable.

€© Data independence means independence between application program and
the data. The advantage is that when the data representation changes, it is not
necessary to change the application program.

€© Data inconsistency means different copies of the same data will have different
values.

€© Centralizing the data means data can be easily shared between the users but
the main concern is data security.

€© The main threat to data integrity comes from several different users attempting
to update the same data at the same time. For example, The number of bookings
made is larger than the capacity of the aircraft/train.

17

€© Support for multiple views means DBMS allows different users to see different
views of the database, according to the perspective each one requires. This
concept is used to enhance the security of the database.

Other Advantages of DBMS

Controlling Data Redundancy

In non-database systems each application program has its own private files. In this
case, the duplicated copies of the same data is created in many places. In DBMS, all
data of an organization is integrated into a single database file. The data is recorded in
only one place in the database and it is not duplicated.

Data Sharing

In DBMS, data can be shared by authorized users of the organization. The database
administrator manages the data and gives rights to users to access the data. Many
users can be authorized to access the same piece of information simultaneously. The
remote users can also share same data. Similarly, the data of same database can be
shared between different application programs.

Data Consistency

By controlling the data redundancy, the data consistency is obtained. If a data item
appears only once, any update to its value has to be performed only once and the
updated value is immediately available to all users. If the DBMS has controlled
redundancy, the database system enforces consistency.

Data Integration

In Database management system, data in database is stored in tables. A single
database contains multiple tables and relationships can be created between tables (or
associated data entities). This makes easy to retrieve and update data.

Integration Constraints

Integrity constraints or consistency rules can be applied to database so that the correct
data can be entered into database. The constraints may be applied to data item within a
single record or they may be applied to relationships between records.

Data Security

Form is very important object of DBMS. You can create forms very easily and quickly in
DBMS. Once a form is created, it can be used many times and it can be modified very
easily. The created forms are also saved along with database and behave like a
software component. A form provides very easy way (user-friendly) to enter data into
database, edit data and display data from database. The non-technical users can also
perform various operations on database through forms without going into technical
details of a fatabase.

Report Writing

18

Most of the DBMSs provide the report writer tools used to create reports. The users can
create very easily and quickly. Once a report is created, it can be used may times and it
can be modified very easily. The created reports are also saved along with database
and behave like a software component.

Control over Concurrency

In a computer file-based system, if two users are allowed to access data
simultaneously, it is possible that they will interfere with each other. For example, if both
users attempt to perform update operation on the same record, then one may overwrite
the values recorded by the other. Most database management systems have sub-

systems to control the concurrency so that transactions are always recorded with
accuracy.

Backup and Recovery Procedures

In a computer file-based system, the user creates the backup of data regularly to protect
the valuable data from damage due to failures to the computer system or application
program. It is very time consuming method, if amount of data is large. Most of the
DBMSs provide the ‘backup and recovery' sub-systems that automatically create the
backup of data and restore data if required.

Data Independence is defined as a property of DBMS that helps you to change the
Database schema at one level of a database system without requiring to change the
schema at the next higher level. Data independence helps you to keep data separated
from all programs that make use of it.

You can use this stored data for computing and presentation. In many systems, data
independence is an essential function for components of the system.

In this tutorial, you will learn:
« What is Data Independence of DBMS?
« Types of Data Independence
« Levels of Database
e Physical Data Independence
« Logical Data Independence
« Difference between Physical and Logical Data Independence

e Importance of Data Independence

19

https://www.guru99.com/dbms-data-independence.html#1
https://www.guru99.com/dbms-data-independence.html#2
https://www.guru99.com/dbms-data-independence.html#3
https://www.guru99.com/dbms-data-independence.html#4
https://www.guru99.com/dbms-data-independence.html#5
https://www.guru99.com/dbms-data-independence.html#6
https://www.guru99.com/dbms-data-independence.html#7

Types of Data Independence
In DBMS there are two types of data independence
1. Physical data independence

2. Logical data independence.

Levels of Database

Before we learn Data Independence, a refresher on Database Levels is important. The
database has 3 levels as shown in the diagram below

1. Physical/Internal
2. Conceptual
3. External

Consider an Example of a University Database. At the different levels this is how the
implementation will look like:

Type of Schema Implementation

External Schema View 1: Course info(cid:int,cname:string)
View 2: studeninfo(id:int. name:string)

Conceptual Shema Students(id: int, name: string, login: string,
age: integer)
Courses(id: int, cname.string, credits:integ
er)
Enrolled(id: int, grade:string)

Physical Schema « Relations stored as unordered files.
e Index on the first column of
Students.

Physical Data Independence

20

Physical data independence helps you to separate conceptual levels from the
internal/physical levels. It allows you to provide a logical description of the database
without the need to specify physical structures. Compared to Logical Independence, it is
easy to achieve physical data independence.

With Physical independence, you can easily change the physical storage structures or
devices with an effect on the conceptual schema. Any change done would be absorbed
by the mapping between the conceptual and internal levels. Physical data
independence is achieved by the presence of the internal level of the database and then
the transformation from the conceptual level of the database to the internal level.
Examples of changes under Physical Data Independence

Due to Physical independence, any of the below change will not affect the conceptual
layer.

o Using a new storage device like Hard Drive or Magnetic Tapes
« Modifying the file organization technique in the Database

e Switching to different data structures.

e Changing the access method.

« Modifying indexes.

« Changes to compression techniques or hashing algorithms.

« Change of Location of Database from say C drive to D Drive

Logical Data Independence

Logical Data Independence is the ability to change the conceptual scheme without
changing

1. External views
2. External API or programs

Any change made will be absorbed by the mapping between external and conceptual
levels.

When compared to Physical Data independence, it is challenging to achieve logical data
independence.

21

Examples of changes under Logical Data Independence

Due to Logical independence, any of the below change will not affect the external layer.

1.

Add/Modify/Delete a new attribute, entity or relationship is possible without a

rewrite of existing application programs

Merging two records into one

Breaking an existing record into two or more records

Difference between Physical and Logical Data Independence

Logica Data Independence

Logical Data Independence is mainly
concerned with the structure or changing
the data definition.

It is difficult as the retrieving of data is
mainly dependent on the logical structure
of data.

Compared to Logic Physical
independence it is difficult to achieve
logical data independence.

You need to make changes in the
Application program if new fields are
added or deleted from the database.

Modification at the logical levels is
significant whenever the logical structures
of the database are changed.

Concerned with conceptual schema

22

Physical Data Independence

Mainly concerned with the storage of the
data.

It is easy to retrieve.

Compared to Logical Independence it is
easy to achieve physical data
independence.

A change in the physical level usually
does not need change at the Application
program level.

Modifications made at the internal levels
may or may not be needed to improve the
performance of the structure.

Concerned with internal schema

Example: Add/Modify/Delete a new Example: change in compression
attribute techniques, hashing algorithms, storage
devices, etc

Importance of Data Independence
e Helps you to improve the quality of the data
« Database system maintenance becomes affordable
o Enforcement of standards and improvement in database security
e You don't need to alter data structure in application programs

« Permit developers to focus on the general structure of the Database rather than
worrying about the internal implementation

« It allows you to improve state which is undamaged or undivided
« Database incongruity is vastly reduced.

« Easily make modifications in the physical level is needed to improve the
performance of the system.

Summary
« Data Independence is the property of DBMS that helps you to change the
Database schema at one level of a database system without requiring to change
the schema at the next higher level.

o Two levels of data independence are 1) Physical and 2) Logical

o Physical data independence helps you to separate conceptual levels from the
internal/physical levels

o Logical Data Independence is the ability to change the conceptual scheme
without changing

« When compared to Physical Data independence, it is challenging to achieve
logical data independence

o Data Independence Helps you to improve the quality of the data

23

Types of database users

This differentiation is made according to the interaction of users to the database.
Database system is made to store information and provide an environment for retrieving
information. There are four types of database users in DBMS we are going to discuss in
this article.

Different Types of Database Users in DBMS

Application Programmers

As its name shows, application programmers are the one who writes application
programs that uses the database. These application programs are written in
programming languages like COBOL or PL (Programming Language 1), Java and fourth
generation language. These programs meet the user requirement and made according
to user requirements. Retrieving information, creating new information and changing
existing information is done by these application programs.

They interact with DBMS through DML (Data manipulation language) calls. And all
these functions are performed by generating a request to the DBMS. If application
programmers are not there then there will be no creativity in the whole team of
Database.

End Users

End users are those who access the database from the terminal end. They use the
developed applications and they don’t have any knowledge about the design and
working of database. These are the second class of users and their main motto is just to
get their task done. There are basically two types of end users that are discussed
below.

Casual User

These users have great knowledge of query language. Casual users access data by
entering different queries from the terminal end. They do not write programs but they
can interact with the system by writing queries.

Naive

Any user who does not have any knowledge about database can be in this category.
There task is to just use the developed application and get the desired results. For

example: Clerical staff in any bank is a naive user. They don’t have any dbms
knowledge but they still use the database and perform their given task.

24

DBA (Database Administrator)

DBA can be a single person or it can be a group of person. Database Administrator is
responsible for everything that is related to database. He makes the policies, strategies
and provides technical supports.

System Analyst

System analyst is responsible for the design, structure and properties of database. All
the requirements of the end users are handled by system analyst. Feasibility, economic
and technical aspects of DBMS is the main concern of system analyst.

Role of Database administrator

Role, Duties and Responsibilities of database Administrator(DBA): There are lots

of role and duties of a database administrator (DBA). He is responsible for managing,
securing and taking care of the database system. So before we start discussing the role
and duties of DBA, we should understand who DBA is in actual and what is he meant
for?

Who Is A DBA (Database Administrator)

A Database Administrator is a person or a group of person who are responsible for
managing all the activities related to database system. This job requires a high level of
expertise by a person or group of person. There are very rare chances that only a single
person can manage all the database system activities so companies always have a
group of people who take care of database system.

In a nut shell, A DBA is the controller of everything related to database system. Now let
us discuss what are the main role and duties of Database Administrator (DBA).

Role, Duties and Responsibilities of database Administrator(DBA)

Installing and Configuration of database: DBA is responsible for installing the database
software. He configure the software of database and then upgrades it if needed. There
are many database software like oracle, Microsoft SQL and MySQL in the industry so
DBA decides how the installing and configuring of these database software will take
place.

1. Deciding the hardware device

Depending upon the cost, performance and efficiency of the hardware, it is DBA who
have the duty of deciding which hardware devise will suit the company requirement. It is
hardware that is an interface between end users and database so it needed to be of
best quality.

25

https://whatisdbms.com/wp-content/uploads/2016/03/Role-Of-DBA.jpg

2. Managing Data Integrity

Data integrity should be managed accurately because it protects the data from
unauthorized use. DBA manages relationship between the data to maintain data
consistency.

3. Decides Data Recovery and Back up method

If any company is having a big database, then it is likely to happen that database may
fail at any instance. It is require that a DBA takes backup of entire database in regular
time span. DBA has to decide that how much data should be backed up and how
frequently the back should be taken. Also the recovery of data base is done by DBA if
they have lost the database.

4. Tuning Database Performance

Database performance plays an important role for any business. If user is not able to
fetch data speedily then it may loss company business. So by tuning an modifying sql
commands a DBA can improves the performance of database.

5. Capacity Issues

All the databases have their limits of storing data in it and the physical memory also has
some limitations. DBA has to decide the limit and capacity of database and all the
issues related to it.

6. Database design

The logical design of the database is designed by the DBA. Also a DBA is responsible
for physical design, external model design, and integrity control.

7. Database accessibility

DBA writes subschema to decide the accessibility of database. He decides the users of
the database and also which data is to be used by which user. No user has to power to
access the entire database without the permission of DBA.

8. Decides validation checks on data

DBA has to decide which data should be used and what kind of data is accurate for the
company. So he always puts validation checks on data to make it more accurate and
consistence.

26

9. Monitoring performance

If database is working properly then it doesn’t mean that there is no task for the DBA.
Yes f course, he has to monitor the performance of the database. A DBA monitors the
CPU and memory usage.

10. Decides content of the database

A database system has many kind of content information in it. DBA decides fields, types
of fields, and range of values of the content in the database system. One can say that
DBA decides the structure of database files.

11. Provides help and support to user

If any user needs help at any time then it is the duty of DBA to help him. Complete
support is given to the users who are new to database by the DBA.

12. Database implementation

Database has to be implemented before anyone can start using it. So DBA implements
the database system. DBA has to supervise the database loading at the time of its
implementation.

13. Improve query processing performance

Queries made by the users should be performed speedily. As we have discussed that
users need fast retrieval of answers so DBA improves query processing by improving
their performance.

So these were the Role, Duties and Responsibilities of database Administrator(DBA). If
you liked them then please share then with your friends.

27

Data Models

Unit - I

Brief overview of Hierarchical and Network Model

In Hierarchical data model, relationship between table and data is defined in parent
child structure. In this structure data are arranged in the form of a tree structure. This
model supports one-to-one and one-to-many relationships.

On the other hand, network model arrange data in graph structure. In this model each
parents can have multiple children and children can also have multiple parents. This
model supports many to many relationships also.

Sr. Key

No.

1 Basic

2 Data

Inconsistency

3 Traversing

4 Relationship

5 Structure

Hierarchical Data Model

Relationship between
records is of the parent child

type

It can have data
inconsistency during the
updation and deletion of the
data

Traversing of data is
complex

It does not support many to

many relationships

Its create tree like structure

28

Network Data Model

Relationship between records is
expressed in the form of pointers
or links.

No Data inconsistency

Data traversing is easy because
node can be accessed from
parent to child or child to parent

It support many to many
relationships

It support graph like structure

Detailed study of Relational Model (Relations, Properties)

Relational data model is the primary data model, which is used widely around the world
for data storage and processing. This model is simple and it has all the properties and
capabilities required to process data with storage efficiency.

Concepts
Tables -
In relational data model, relations are saved in the format of Tables. This format stores

the relation among entities. A table has rows and columns, where rows represents
records and columns represent the attributes.

Tuple -

A single row of a table, which contains a single record for that relation is called a tuple.

Relation instance —

A finite set of tuples in the relational database system represents relation instance.
Relation instances do not have duplicate tuples.

Relation schema -

A relation schema describes the relation name (table name), attributes, and their
names.

Relation key -

Each row has one or more attributes, known as relation key, which can identify the row
in the relation (table) uniquely.

Attribute domain -

Every attribute has some pre-defined value scope, known as attribute domain.
Constraints

Every relation has some conditions that must hold for it to be a valid relation. These
conditions are called Relational Integrity Constraints. There are three main integrity

constraints —

« Key constraints
« Domain constraints

o Referential integrity constraints

29

Key Constraints

There must be at least one minimal subset of attributes in the relation, which can
identify a tuple uniquely. This minimal subset of attributes is called key for that relation.
If there are more than one such minimal subsets, these are called candidate keys.

Key constraints force that -

« in arelation with a key attribute, no two tuples can have identical values for key
attributes.

« a key attribute can not have NULL values.

Key constraints are also referred to as Entity Constraints.

Domain Constraints

Attributes have specific values in real-world scenario. For example, age can only be a
positive integer. The same constraints have been tried to employ on the attributes of a
relation. Every attribute is bound to have a specific range of values. For example, age
cannot be less than zero and telephone numbers cannot contain a digit outside 0-9.

Referential integrity Constraints

Referential integrity constraints work on the concept of Foreign Keys. A foreign key is a
key attribute of a relation that can be referred in other relation.

Referential integrity constraint states that if a relation refers to a key attribute of a
different or same relation, then that key element must exist.

Now let’s get back to our examination of basic relational concepts. In this section, | want
to focus on some specific properties of relations themselves. First of all, every relation
has a heading and a body: The heading is a set of attributes (where by the

term attribute | mean, very specifically, an attribute-name/type-name pair, and no two
attributes in the same heading have the same attribute name), and the body is a set of
tuples that conform to that heading. In the case of the suppliers relation in Figure 1-3,
for example, there are four attributes in the heading and five tuples in the body. Note,
therefore, that a relation doesn’t really contain tuples—it contains a body, and that body
in turn contains the tuples—but we do usually talk as if relations contained tuples
directly, for simplicity.

By the way, although it’s strictly correct to say the heading consists of attribute-
name/type-name pairs, it's usual to omit the type names in pictures like Figure 1-3 and
hence to pretend the heading is just a set of attribute names. For example, the STATUS
attribute does have a type—INTEGER, let's say—but | didn’t show it in Figure 1-3. But
you should never forget it’s there!

30

https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample

Next, the number of attributes in the heading is the degree (sometimes the arity), and
the number of tuples in the body is the cardinality. For example, relation S in Figure 1-
3 has degree 4 and cardinality 5; likewise, relation P in that figure has degree 5 and
cardinality 6, and relation SP in that figure has degree 3 and cardinality 12. Note: The
term degree is used in connection with tuples also.[11] For example, the tuples in
relation S are (like relation S itself) all of degree 4.

Next, relations never contain duplicate tuples. This property follows because a body is
defined to be a set of tuples, and sets in mathematics don’t contain duplicate elements.
Now, SQL fails here, as I'm sure you know: SQL tables are allowed to contain duplicate
rows and thus aren’t relations, in general. Please understand, therefore, that throughout
this book | always use the term “relation” to mean a relation—without duplicate tuples,
by definition—and not an SQL table. Please understand too that relational operations
always produce a result without duplicate tuples, again by definition. For example,
projecting the suppliers relation of Figure 1-3 on CITY produces the result shown here
on the left and not the one on the right:

(The result on the left can be obtained via the SQL query SELECT DISTINCT CITY
FROM S. Omitting that DISTINCT leads to the nonrelational result on the right. Note in
particular that the table on the right has no double underlining; that’'s because it has no
key, and hence no primary key a fortiori.)

Next, the tuples of a relation are unordered, top to bottom. This property follows
because, again, a body is defined to be a set, and sets in mathematics have no ordering
to their elements (thus, for example, {a,b,c} and {c,a,b} are the same set in
mathematics, and a similar remark naturally applies to the relational model). Of course,
when we draw a relation as a table on paper, we do have to show the rows in some top
to bottom order, but that ordering doesn’t correspond to anything relational. In the case
of the suppliers relation as depicted in Figure 1-3, for example, | could have shown the
rows in any order—say supplier S3, then S1, then S5, then S4, then S2—and the
picture would still represent the same relation. Note: The fact that relations have no
ordering to their tuples doesn’t mean queries can’t include an ORDER BY specification,
but it does mean such queries produce a result that’s not a relation. ORDER BY is
useful for displaying results, but it isn’t a relational operator as such.

In similar fashion, the attributes of a relation are also unordered, left to right, because a
heading too is a mathematical set. Again, when we draw a relation as a table on paper,
we have to show the columns in some left to right order, but that ordering doesn’t
correspond to anything relational. In the case of the suppliers relation as depicted

in Figure 1-3, for example, | could have shown the columns in any left to right order—
say STATUS, SNAME, CITY, SNO—and the picture would still represent the same
relation in the relational model. Incidentally, SQL fails here too: SQL tables do have a

31

https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s06.html#ftn.CHP-1-FN-9
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample

left to right ordering to their columns (another reason why SQL tables aren’t relations, in
general). For example, these two pictures represent the same relation but different SQL
tables:

(The corresponding SQL queries are SELECT SNO, CITY FROM S and SELECT CITY,
SNO FROM S, respectively. Now, you might be thinking that the differences between
these two queries, and between these two tables, are hardly very significant; in fact,
however, they have some serious consequences, some of which I'll be touching on in
later chapters. See, for example, the discussion of SQL’s explicit JOIN operator

in Chapter 6.)

Finally, relations are always normalized (equivalently, they’re in first normal form,
1INF).[12] Informally, what this means is that, in terms of the tabular picture of a relation,
at every row and column intersection we always see just a single value. More formally, it
means that every tuple in every relation contains just a single value, of the appropriate
type, in every attribute position. Note: I'll have quite a lot more to say on this particular
issue in the next chapter.

Before | finish with this section, I'd like to emphasize something I've touched on several
times already: namely, the fact that there’s a logical difference between a relation as
such, on the one hand, and a picture of a relation as shown in, for example, Figure 1-

1 and Figure 1-3, on the other. To say it one more time, the constructs in Figure 1-

1 and Figure 1-3 aren’t relations at all but, rather, pictures of relations—which |
generally refer to as tables, despite the fact that table is a loaded word in SQL contexts.
Of course, relations and tables do have certain points of resemblance, and in informal
contexts it's usual, and usually acceptable, to say they’re the same thing. But when
we’re trying to be precise—and right now | am trying to be a little bit precise—then we
do have to recognize that the two concepts are not identical.

As an aside, | observe that, more generally, there’s a logical difference between a thing
of any kind and a picture of that thing. There’s a famous painting by Magritte that
beautifully illustrates the point I'm trying to make here. The painting is of an ordinary
tobacco pipe, but underneath Magritte has written Ceci n’est pas une pipe ... the point
being, of course, that obviously the painting isn’t a pipe—instead, it’s a picture of a pipe.

All of that being said, | should now say too that it's actually a major advantage of the
relational model that its basic abstract object, the relation, does have such a simple
representation on paper; it's that simple representation on paper that makes relational
systems easy to use and easy to understand, and makes it easy to reason about the
way such systems behave. However, it's unfortunately also the case that that simple
representation does suggest some things that aren’t true (e.g., that there’s a top to
bottom tuple ordering).

32

https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch06.html
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s06.html#ftn.CHP-1-FN-10
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_departments-and-employees_databasems
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_departments-and-employees_databasems
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_departments-and-employees_databasems
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_departments-and-employees_databasems
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample

And one further point: I've said there’s a logical difference between a relation and a
picture of a relation. The concept of logical difference derives from a dictum of
Wittgenstein’s:

All logical differences are big differences.

This notion is an extraordinarily useful one; as a “mind tool,” it's a great aid to clear and
precise thinking, and it can be very helpful in pinpointing and analyzing some of the
confusions that are, unfortunately, all too common in the database world. I'll be
appealing to it many times in the pages ahead. Meanwhile, let me point out that we've
encountered quite a few important logical differences already. Here are some of them:

SQL vs. the relational model

Model vs. implementation

Data model (first sense) vs. data model (second sense)
And we’ll be meeting many more in the pages ahead.
Some Crucial Points

At this juncture I'd like to mention some crucial points that I'll be elaborating on in later
chapters (especially Chapter 3). The points in question are these:

Every subset of a tuple is a tuple: For example, consider the tuple for supplier S1

in Figure 1-3. That tuple has four components, corresponding to the four attributes
SNO, SNAME, STATUS, and CITY. And if we remove (say) the SNAME component,
what'’s left is indeed still a tuple: viz., a tuple with three components (a tuple of degree
three).

Every subset of a heading is a heading: For example, consider the heading of the
suppliers relation in Figure 1-3. That heading has four attributes: SNO, SNAME,
STATUS, and CITY. And if we remove (say) the SNAME and STATUS attributes, what's
left is still a heading, a heading of degree two.

Every subset of a body is a body: For example, consider the body of the suppliers
relation in Figure 1-3. That body has five tuples, corresponding to the five suppliers S1,
S2, S3, S4, and S5. And if we remove (say) the S1 and S3 tuples, what’s left is still a
body, a body of cardinality three.

Note: Perhaps | should state for the record here that throughout this book—in
accordance with normal practice—I take expressions of the form “B is a subset of A” to
include the possibility that A and B might be equal. Thus, for example, every tuple is a
subset of itself (and so is every heading, and so is every body). When | want to exclude

33

https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch03.html
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample

such a possibility, I'll talk explicitly in terms of proper subsets. For example, our usual
tuple for supplier S1 is certainly a subset of itself, but it isn’t a proper subset of itself.
What's more, the foregoing remarks apply equally to supersets, mutatis mutandis; for
example, the tuple for supplier S1 is a superset of itself, but not a proper superset of
itself.[13]

I'd also like to say something about the crucial notion of equality—especially as that
notion applies to tuples and relations specifically. In general, two values are equal if and
only if they’re the very same value. For example, the integer 3 is equal to the integer 3,
and not to anything else—in particular, not to any other integer. In exactly the same
way, two tuples are equal if and only if they’re the very same tuple. With reference

to Figure 1-1, for example, the tuple for supplier S1 is equal to the tuple for supplier S1,
and not to anything else—in particular, not to any other tuple. In other words, two tuples
are equal if and only if (a) they involve exactly the same attributes and (b)
corresponding attribute values are equal in turn.

Moreover (this might seem obvious, but it needs to be said), two tuples are duplicates of
each other if and only if they’re equal.

Turning now to relations: In exactly the same way, two relations are equal if and only if
they’re the very same relation. With reference to Figure 1-1, for example, the suppliers
relation is equal to the suppliers relation and not to anything else—in particular, not to
any other relation. In other words, two relations are equal if and only if, in turn, their
headings are equal and their bodies are equal.

Key & Integrity rules

Integrity Rules are imperative to a good database design. Most RDBMS have these
rules automatically, but it is safer to just make sure that the rules are already applied in
the design. There are two types of integrity mentioned in integrity rules, entity and
reference. Two additional rules that aren't necessarily included in integrity rules but are
pertinent to database designs are business rules and domain rules.

Entity integrity exists when each primary key within a table has a value that is unique.
this ensures that each row is uniquely identified by the primary key.One requirement for
entity integrity is that a primary key cannot have a null value. The purpose of this
integrity is to have each row to have a unique identity, and foreign key values can
properly reference primary key values.

Reference integrity exists when a foreign contains a value that value refers to an exiting
tuple/row in another relation. The purpose of reference integrity is to make it impossible
to delete a row in one table whose primary key has mandatory matching foreign key
values in another table.

34

https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s06.html#ftn.CHP-1-FN-11
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_departments-and-employees_databasems
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_departments-and-employees_databasems

Business rules are constraints or defintions created by some aspect of a business. They
can apply to almost all aspects of a business and are meant to describte operations of a
business. An example of a business rule might be no credit check is to be performed on
return customers. This example would change a database design for a car company.

Domain rules or integrity specify that al columns in a database must be declared upon a
defined domain. A domain is a set values of the same value type.

Other integrity rules include not null and unique constraints. The not null constraint can
be placed on a column to ensure that every row in the table has a value for that column.
The unique constraint is restriction placed on a column to ensure that no duplicate
values exist for that column.

UNIQUE Key Integrity Constraints

A UNIQUE key integrity constraint requires that every value in a column or set of
columns (key) be uniqgue—that is, no two rows of a table have duplicate values in a
specified column or set of columns.

This section includes the following topics:

« Unique Keys
e Combining UNIQUE Key and NOT NULL Integrity Constraints

Unique Keys

The columns included in the definition of the UNIQUE key constraint are called
the unique key. If the unique key consists of more than one column, then that group of
columns is called a composite unique key.

Unigue key is often incorrectly used as a synonym for the term UNIQUE key
constraint or UNIQUE index. However, key refers only to the column or set of columns
used in the definition of the integrity constraint.

For example, the UNIQUE key constraint might let you enter an area code and
telephone number any number of times, but the combination of a given area code and
given telephone number cannot be duplicated in the table. This eliminates unintentional
duplication of a telephone number.

Combining UNIQUE Key and NOT NULL Integrity Constraints

Columns with both unique keys and NOT NULL integrity constraints are common. This
combination forces the user to enter values in the unique key and also eliminates the
possibility that any new row's data will ever conflict with an existing row's data.

35

https://docs.oracle.com/cd/B28359_01/server.111/b28318/data_int.htm#BABJBJCA
https://docs.oracle.com/cd/B28359_01/server.111/b28318/data_int.htm#BABDIEDF

PRIMARY KEY Integrity Constraints

Each table in the database can have at most one PRIMARY KEY constraint. The values
in the group of one or more columns subject to this constraint constitute the unique
identifier of the row. In effect, each row is named by its primary key values.

The Oracle Database implementation of the PRIMARY KEY integrity constraint
guarantees that both of the following are true:

e No two rows of a table have duplicate values in the specified column or set of
columns.

e The primary key columns do not allow nulls. That is, a value must exist for the
primary key columns in each row.

This section includes the following topics:

e Primary Keys
« PRIMARY KEY Constraints and Indexes

Primary Keys

The columns included in the definition of a table's PRIMARY KEY integrity constraint
are called the primary key. Although it is not required, every table should have a primary
key so that:

« [Each row in the table can be uniquely identified
e No duplicate rows exist in the table

PRIMARY KEY Constraints and Indexes

Oracle Database enforces all PRIMARY KEY constraints using indexes. The primary
key constraint created for a column is enforced by the implicit creation of:

e A unique index on that column
e A NOT NULL constraint for that column

Composite primary key constraints are limited to 32 columns, which is the same
limitation imposed on composite indexes. The name of the index is the same as the
name of the constraint. Also, you can specify the storage options for the index by
including the ENABLE clause in the CREATE TABLE or ALTER TABLE statement used
to create the constraint. If a usable index exists when a primary key constraint is
created, then the primary key constraint uses that index rather than implicitly creating a
new one.

36

https://docs.oracle.com/cd/B28359_01/server.111/b28318/data_int.htm#BABGADJJ
https://docs.oracle.com/cd/B28359_01/server.111/b28318/data_int.htm#BABBJBDH

Comparison of Hierarchical

Classification, in its widest sense, has to do with forms of the relatedness and with the
organization and display of the relations in a useful manner. The items to be studied
could be anything: people, bacteria, religions, books, etc. The attributes in each case
would be those features of the items that are of interest for the purpose of the study [1].
Classifications are generally pictured in the form of hierarchical trees, also called a
dendrogram. A dendrogram is the graphical representation of an ultrametric (=
cophenetic) matrix; so dendrograms can be compared to one another by comparing
their cophenetic matrices [2].

Cluster Analysis (CA), Principal Components Analysis (PCA) and Discriminant Analysis
(DA) are three of the primary methods of modern multivariate analysis. Because of its
utility, clustering has emerged as one of the leading methods of multivariate analysis [3].

Cluster analysis is a multivariate statistical technique which was originally developed for
biological classification. Biologists Robert Sokal and Peter Sneath published their
seminal text ‘Principles of Numerical Taxonomy’ in 1963. Sokal and Sneath
demonstrated that cluster analysis could be utilized to efficiently classification a data set
which contained all relevant characteristics of an organism. When the organisms had
been classified based on these characteristics, it could be determined in which way they
differed, and if they belonged to different species. In this way, Sokal and Sneath
asserted, researchers could trace the path of evolution from one species to another [4].

In this study for clustering, two measures of cluster ‘goodness’ or quality are used. One
type of measure allows us to compare different sets of clusters without reference to
external knowledge and is called an internal quality which is used as a measure of
‘overall similarity’ based on the pairwise similarity of documents in a cluster. The other
type of measures allows evaluating how well the clustering is working by comparing the
groups produced by the clustering techniques to known classes. This type of measure is
called an external quality measure, which is not scope of this study [5].

The joining or tree clustering method uses the dissimilarities (similarities) or distances
(Euclidean distance, squared Euclidean distance, city-block (Manhattan) distance,
Chebychev distance, power distance, Mahalanobis distance, etc.) between objects
when forming the clusters. Similarities are a set of rules that serve as criteria for
grouping or separating items. These distances (similarities) can be based on a single
dimension or multiple dimensions, with each dimension representing a rule or condition
for grouping objects. The joining algorithm does not ‘care’ whether the distances that
are ‘fed’ to it are actual real distances, or some other derived measure of distance that

37

https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR1
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR2
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR3
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR4
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR5

is more meaningful to the researcher; and it is up to the researcher to select the right
method for his/her specific application [6].

The next step is to identify how one can find the natural clusters among items
characterized by many attributes. A number of cluster analysis procedures (single
linkage (nearest neighbor), Complete linkage (furthest neighbor), Unweighted pair-
group average (UPGMA), Weighted pair-group average (WPGMA), Unweighted pair-
group centroid (UPGMC), Weighted pair-group centroid (median), Ward’s method, etc.)
are available; many of these begin with an n-dimensional space in which each entity is
represented by a single point. The dimensions in the space represent the characteristics
upon which the entities are to be compared. Similarity between entities can be
measured by: (1) the correlation of entities’ scores on the dimensions (cophenetic
correlation) or (2) the distance between points in the space (points closest to each other
are most similar) [7, 8].

Suppose that the original data {Xi{Xi} have been modeled using a cluster method to
produce a dendrogram {Ti}Ti}; that is, a simplified model in which data that are ‘close’
have been grouped into a hierarchical tree. Define the following distance

measures. Xx(i,j)=|Xi—-Xj|x(i,j)=|Xi—=X]|, the ordinary Euclidean distance between the i th
and j th observations. t(i,j)=t(i,j))= the dendrogrammatic distance between the model
points TiTi and TjTj. This distance is the height of the node at which these two points
are first joined together. Then, letting x be the average of the x(i,j)x(i,j), and letting t be
the average of the t(i,j)t(i,j), the cophenetic correlation coefficient c is defined as in (1)

[9]

Since its introduction by Sokal and Rohlf [10], the cophenetic correlation coefficient has
been widely used in numerical phenetic studies, both as a measure of degree of fit of a
classification to a set of data and as a criterion for evaluating the efficiency of various
clustering techniques [11]. In statistics, and especially in biostatistics, cophenetic
correlation (more precisely, the cophenetic correlation coefficient) is a measure of how
faithfully a dendrogram preserves the pairwise distances between the original
unmodeled data points. Although it has been most widely applied in the field of
biostatistics (typically to assess cluster-based models of DNA sequences, or other
taxonomic models), it can also be used in other fields of inquiry where raw data tend to
occur in clumps, or clusters. This coefficient has also been proposed for use as a test
for nested clusters [12].

The problem of comparing classifications with numerical methods is not new; the first
effective numerical method known to us is the ‘cophenetic correlation’ technique of
Sokal and Rohlf [10]. Beginning with the development of cophenetic correlations

38

https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR6
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR7
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR8
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR9
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR10
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR11
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR12
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR10

methods for comparison of dendrograms have recently been the object of strong
interest. Baker [13] investigated the impact of observational errors on the dendrograms
produced by the complete linkage and single linkage hierarchical grouping techniques.
The goodness of fit of the dendrograms was measured by means of the Goodman-
Kruskal gamma coefficient. The gamma coefficients indicated that the single linkage
grouping technique was more sensitive to the type of data errors employed than the
complete linkage technique. Hubert [14] compared two rank orderings of the object
pairs. He tested hypothesis that the given set of proximity values have been assigned
randomly by referring the Goodman-Kruskal rank correlation y statistic to an
approximate permutation distribution. Kuiper and Fisher [15] compared six hierarchical
clustering procedures (single linkage, complete linkage, median, average linkage,
centroid and Ward’s method) for multivariate normal data, assuming that the true
number of clusters was known. The authors used the Rand index, which gives a
proportion of correct groupings, to compare the clustering methods. In their study for
clusters of equal sizes, Ward’s method and complete linkage method, with very unequal
cluster sizes centroid and average linkage method found best, respectively. Blashfield
[16] compared four types of hierarchical clustering methods (single linkage, complete
linkage, average linkage and Ward’s method) for accuracy in recovery of original
population clusters. He used Cohen’s statistic to measure the accuracy of the clustering
methods. According to his results, Ward’s method performed significantly better than
the other clustering procedures and average linkage gave relatively poor results.
According to Milligan [17], complete linkage and Ward’s method reacted badly when
outliers were introduced into the simulated data.

Hands and Everitt [18] compared five hierarchical clustering techniques (single linkage,
complete linkage, average, centroid, and Ward’s method) on multivariate binary data.
They found that Ward’s method was the best overall than other hierarchical methods.
Yao [19] discussed six classical clustering algorithms: k-means, SOM, EM-based
clustering, classification EM clustering, fuzzy k-means, leader clustering and different
combination scenarios of these algorithms. He used a count of cluster categories,
classification accuracy and cluster entropy. Ferreira and Hitchcock [20] compared the
performance of four major hierarchical methods (single linkage, complete linkage,
average linkage and Ward’s method) for clustering functional data. They used the Rand
index to compare the performance of each clustering method. According to their study,
Ward’s method was usually the best, while average linkage performed best in some
special situations, in particular, when the number of clusters is over specified. Milligan
and Cooper [21] used four agglomerative hierarchical clustering methods to generate
partition solutions and formed one factor in the overall design. These were the single
link, complete link, group average (UPGMA) and Ward’s minimum variance methods.
As a result, they found that the single link technique was least effective while the group
average and Ward’s methods gave the best overall recovery.

39

https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR13
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR14
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR15
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR16
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR17
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR18
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR19
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR20
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR21

Consider the studies in the literature and the importance of using the most convenient
cluster method under different conditions (sample size, variables number and distance
measures), a detailed simulation study is undertaken. This study gives more insight into
the functioning of the cluster method under different conditions. The purpose of this
research is to investigate the best clustering method under different conditions.

Method

In this study, seven cluster analysis methods are compared by the cophenetic
correlation coefficient computed according to different clustering methods with a sample
size) and distance measures via a simulation study. The simulation program is
developed in a MATLAB software development environment by the authors. We have
567 different simulation scenarios and 100,000/n replications for each scenario. The
performance is monitored by two different conditions that are mentioned in Table 1 and
Table 2 with 7 cluster methods, 9 distance measures by cophenetic correlation
coefficient in various settings of subgroup means, variances, sample size and variable
numbers simultaneously.

Network and Relational Model

Network Model

The network model is the extension of the hierarchical structure because it allows
many-to-many relationships to be managed in a tree-like structure that allows multiple
parents.

There are two fundamental concepts of a network model -

e Records contain fields which need hierarchical organization.

e Sets are used to define one-to-many relationships between records that contain
one owner, many members.

A record may act as an owner in any number of sets, and a member in any number of
sets.

P.S. Set must not be confused with the mathematical set.

A set is designed with the help of circular linked lists where one record type, the owner
of the set also called as a parent, appears once in each circle, and a second record
type, also known as the subordinate or child, may appear multiple times in each circle.

A hierarchy is established between any two record types where one type (A) is the
owner of another type (B). At the same time, another set can be developed where the
latter set (B) is the owner of the former set (A). In this model, ownership is defined by
the direction, thus all the sets comprise a general directed graph. Access to records is
developed by the indexing structure of circular linked lists.

40

https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#Tab1
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#Tab2

The network model has the following major features -

« It can represent redundancy in data more efficiently than that in the hierarchical

model.

e There can be more than one path from a previous node to successor node/s.

e The operations of the network model are maintained by indexing structure of
linked list (circular) where a program maintains a current position and navigates
from one record to another by following the relationships in which the record

participates.

e Records can also be located by supplying key values.

The following diagram depicts a network model. An agent represents several clients and
manages several entertainers. Each client schedules any number of engagements and
makes payments to the agent for his or her services. Each entertainer performs several
engagements and may play a variety of musical styles.

REPRESENT

AGENTS

CLENTS

MAK

PAYMENTS

MANAGES

ENTERTAINERS

SCHEDULE

PERFORM

ENGAGEMENTS

41

PLAY

MUSIC STYLE

A collection of records is represented by a node, and a set structure helps to establish a
relationship in a network helps to This development helps to relate a pair of nodes
together by using one node as an owner and the other node as a member. A one-to-
many relationship is managed by set structure, which means that a record in the owner
node can be related to one or more records in the member node, but a single record in
the member node is related to only one record in the owner node.

Additionally, a record in the member node cannot exist without being related to an
existing record in the owner node. For example, a client must be assigned to an agent,
but an agent with no clients can still be listed in the database.

y AGENTS OWNER NODE

REPRESENTS SET STRUCTURE

M CUENTS MEMBER NODE

The above diagram shows a diagram of a basic set structure. One or more sets
(connections) can be defined between a specific pair of nodes, and a single node can
also be involved in other sets with other nodes in the database.

The data can be easily accessed inside a network model with the help of an appropriate
set structure. there are no restrictions on choosing the root node, the data can be
accessed via any node and running backward or forward with the help of related sets.

For example, when a user wants to find the agent who booked a specific engagement.
He/she begins by locating the appropriate engagement record in the ENGAGEMENTS
node, and then determines which client "owns" that engagement record via the
Schedule set structure. Finally, he/she identifies the agent that "owns" the client record
via the Represent set structure.

42

Advantages

« fast data access.

o It also allows users to create queries that are more complex than those they
created using a hierarchical database. So, a variety of queries can be run over
this model.

Disadvantages

e A user must be very familiar with the structure of the database to work through
the set structures.

« Updating inside this database is a tedious task. One cannot change a set
structure without affecting the application programs that use this structure to
navigate through the data. If you change a set structure, you must also modify all
references made from within the application program to that structure.

Relational Model

Relational data model is the primary data model, which is used widely around the world
for data storage and processing. This model is simple and it has all the properties and
capabilities required to process data with storage efficiency.

Concepts
Tables -
In relational data model, relations are saved in the format of Tables. This format stores

the relation among entities. A table has rows and columns, where rows represents
records and columns represent the attributes.

Tuple -

A single row of a table, which contains a single record for that relation is called a tuple.

Relation instance —

A finite set of tuples in the relational database system represents relation instance.
Relation instances do not have duplicate tuples.

43

Relation schema -

A relation schema describes the relation name (table name), attributes, and their
names.

Relation key -

Each row has one or more attributes, known as relation key, which can identify the row
in the relation (table) uniquely.

Attribute domain — Every attribute has some pre-defined value scope, known as
attribute domain.

Constraints

Every relation has some conditions that must hold for it to be a valid relation. These

conditions are called Relational Integrity Constraints. There are three main integrity
constraints -

« Key constraints
« Domain constraints

o Referential integrity constraints

Key Constraints

There must be at least one minimal subset of attributes in the relation, which can
identify a tuple uniquely. This minimal subset of attributes is called key for that relation.
If there are more than one such minimal subsets, these are called candidate keys.

Key constraints force that -

e in a relation with a key attribute, no two tuples can have identical values for key
attributes.

e a key attribute can not have NULL values.
Key constraints are also referred to as Entity Constraints.

Domain Constraints

Attributes have specific values in real-world scenario. For example, age can only be a
positive integer. The same constraints have been tried to employ on the attributes of a
relation. Every attribute is bound to have a specific range of values. For example, age
cannot be less than zero and telephone numbers cannot contain a digit outside 0-9.

Referential integrity Constraints

Referential integrity constraints work on the concept of Foreign Keys. A foreign key is a
key attribute of a relation that can be referred in other relation.

44

Referential integrity constraint states that if a relation refers to a key attribute of a
different or same relation, then that key element must exist.

Difference between Network and Relational Data Model :

NETWORK DATA MODEL

It organizes records to one another

through links or pointers.

It organizes records in form of directed

graphs.

In this relationship between various
records is represented physically via

linked list.

There is lack of declarative querying

facilities.

Complexity increases burden on
programmer for database design as well

as data manipulation.

Retrieval algorithms are complex but

symmetric.

There is partial data independence in this

RELATIONAL DATA MODEL

It organizes records in form of table and
relationship between tables are set using

common fields.

It organizes records in form of tables.

In this relationship between various
records is represented logically via

tables.

It provides declarative query facility

using SQL.

As physical level details are hidden from
end users so this model is very simple to

understand.

Retrieval algorithms are simple and

symmetric.

This model provides data independence.

NETWORK DATA MODEL RELATIONAL DATA MODEL

model.
VAX-DBMS, DMS-1100 of UNIVAC and It is mostly used in real world
SUPRADBMS’s use this model. applications. Oracle, SQL.

CODD’s rules for Relational Model

Dr. Edgar F. Codd, after his extensive research on the Relational Model of database
systems, came up with twelve rules of his own, which according to him, a database
must obey in order to be regarded as a true relational database.

These rules can be applied on any database system that manages stored data using
only its relational capabilities. This is a foundation rule, which acts as a base for all the
other rules.

Rule 1: Information Rule

The data stored in a database, may it be user data or metadata, must be a value of
some table cell. Everything in a database must be stored in a table format.

Rule 2: Guaranteed Access Rule

Every single data element (value) is guaranteed to be accessible logically with a
combination of table-name, primary-key (row value), and attribute-name (column
value). No other means, such as pointers, can be used to access data.

Rule 3: Systematic Treatment of NULL Values

The NULL values in a database must be given a systematic and uniform treatment.
This is a very important rule because a NULL can be interpreted as one the following -
data is missing, data is not known, or data is not applicable.

Rule 4: Active Online Catalog

The structure description of the entire database must be stored in an online catalog,
known as data dictionary, which can be accessed by authorized users. Users can use

the same query language to access the catalog which they use to access the database
itself.

46

Rule 5: Comprehensive Data Sub-Language Rule

A database can only be accessed using a language having linear syntax that supports
data definition, data manipulation, and transaction management operations. This
language can be used directly or by means of some application. If the database allows
access to data without any help of this language, then it is considered as a violation.

Rule 6: View Updating Rule

All the views of a database, which can theoretically be updated, must also be
updatable by the system.

Rule 7: High-Level Insert, Update, and Delete Rule

A database must support high-level insertion, updation, and deletion. This must not be
limited to a single row, that is, it must also support union, intersection and minus
operations to yield sets of data records.

Rule 8: Physical Data Independence

The data stored in a database must be independent of the applications that access the
database. Any change in the physical structure of a database must not have any
impact on how the data is being accessed by external applications.

Rule 9: Logical Data Independence

The logical data in a database must be independent of its user’s view (application). Any
change in logical data must not affect the applications using it. For example, if two
tables are merged or one is split into two different tables, there should be no impact or
change on the user application. This is one of the most difficult rule to apply.

Rule 10: Integrity Independence

A database must be independent of the application that uses it. All its integrity
constraints can be independently modified without the need of any change in the
application. This rule makes a database independent of the front-end application and
its interface.

Rule 11: Distribution Independence

The end-user must not be able to see that the data is distributed over various locations.

Users should always get the impression that the data is located at one site only. This
rule has been regarded as the foundation of distributed database systems.

47

Rule 12: Non-Subversion Rule

If a system has an interface that provides access to low-level records, then the
interface must not be able to subvert the system and bypass security and integrity

constraints.

E-R diagram

Let us now learn how the ER Model is represented by means of an ER diagram. Any
object, for example, entities, attributes of an entity, relationship sets, and attributes of
relationship sets, can be represented with the help of an ER diagram.

Entity

Entities are represented by means of rectangles. Rectangles are named with the entity
set they represent.

Student Teacher Projects

Attributes

Attributes are the properties of entities. Attributes are represented by means of
ellipses. Every ellipse represents one attribute and is directly connected to its entity

(rectangle).

Name BirthDate

__/
/ Student

Roll_No.

48

If the attributes are composite, they are further divided in a tree like structure. Every
node is then connected to its attribute. That is, composite attributes are represented by
ellipses that are connected with an ellipse.

Multivalued attributes are depicted by double ellipse.

49

Derived attributes are depicted by dashed ellipse.

LastName

FirstName

Name BirthDate

Student i -
// \': Age

i S

Roll_No.

Relationship

Relationships are represented by diamond-shaped box. Name of the relationship is
written inside the diamond-box. All the entities (rectangles) participating in a
relationship, are connected to it by a line.

Binary Relationship and Cardinality

A relationship where two entities are participating is called a binary relationship.
Cardinality is the number of instance of an entity from a relation that can be associated
with the relation.

e One-to-one - When only one instance of an entity is associated with the
relationship, it is marked as '1:1'. The following image reflects that only one
instance of each entity should be associated with the relationship. It depicts one-
to-one relationship.

50

e One-to-many — When more than one instance of an entity is associated with a
relationship, it is marked as '1:N'. The following image reflects that only one
instance of entity on the left and more than one instance of an entity on the right
can be associated with the relationship. It depicts one-to-many relationship.

Many-to-one — When more than one instance of entity is associated with the
relationship, it is marked as 'N:1'. The following image reflects that more than
one instance of an entity on the left and only one instance of an entity on the
right can be associated with the relationship. It depicts many-to-one relationship

N 1
Entty — Relationship —— Entit

Many-to-many — The following image reflects that more than one instance of an
entity on the left and more than one instance of an entity on the right can be
associated with the relationship. It depicts many-to-many relationship.

. N . N .
Entty Relationship —— Enty

52

Participation Constraints

« Total Participation — Each entity is involved in the relationship. Total
participation is represented by double lines.

« Partial participation — Not all entities are involved in the relationship. Partial
participation is represented by single lines.

Entity == Relationship —— Enty

total participation partial participation

53

Unit - [l

Normalization

Normalization concepts and update anomalies

In this tutorial, you will learn about data normalization in SQL. Normalization is
actually a database design method that arranges the tables in a database with
reduced dependency and redundancy of data. Normalization splits up the bigger
tables to smaller ones and integrated them through relationships. Normalization
improves data integrity. If you fail to use normalization, you could end up facing
anomalies namely insertion, update, and deletion. Insertion anomalies happen to
suppose if we couldn’t insert data into the table without another attribute’s availability.
Update anomalies are actually an inconsistency in the data which could lead to data
redundancy and incomplete data update. Deletion anomalies happen if you lose
some attributes because of deleting other attributes.

Simply, the organization of data in the DB is called data normalization. Normalization
actually demands the organization of columns and tables present in a DB to make
sure that their dependants were correctly administered by the DB integrity
constraints. It provides more efficiency because it splits up a bigger table to smaller
ones.

Purpose of Normalization

As we all know, SQL is a language that is used to communicate with the DB. Any
communication of data in the database has to be initiated and that must be
normalized. Otherwise, you will end up in anomalies. It will improve data distribution
as well. Normalization can be achieved by using normal forms. The normal forms we
are going to learn are:

54

1 NF (First Normal Form)

2 NF (Second Normal Form)

3 NF (Third Normal Form) and

Boyce Codd NF

Let’s see one by one with examples.

1 NF (First Normal Form)
We investigate the atomicity problem in 1 NF. In this context, atomicity implies that
the values present in the table should not be divided or split up further. Simply, one
cell could not carry several values. It is considered as a violation in 1 NF if a table

holds a multiple value attribute. For example, have a look at the table below:

1PRIO01 -9678900476 25,000
1PRI002 -0887765341 1,000

1PRIOA 6345678810 | 50,000

Evidently, you can notice that the phone number column contains more than one
value and thus, it is a violation in 1 NF. If we apply 1 NF, the table will automatically
get normalized (arranged) like as follows:

55

1PRIO01 -9678900476 25,000
1PRI002 -9887765341 1,000

1PRIOOA 6345678810 | 50,000

As per the above table, you could visualize every column with distinct values and thus
we achieved atomicity using 1 NF.

2NF (Second Normal Form)

In the case of 2 NF, the basic need for satisfying 2 NF is that the table must be
present in 1 NF and there should not be any partial dependency, which means the
actual subset of the candidate key decides the attribute which is non-prime. Let’s look
at an example to understand 2 NF better!

56

https://www.besanttechnologies.com/training-courses/oracle-training/sql-training-institute-in-chennai?utm_source=bt_blog

1PRIO0O1 South-Al Blackberries

2PRI001 South-A2 Jingle bells

normalized (arranged) as follows:

The above table contains a composite primary key namely Student admission number
and Classroom number. Here, Classroom location is a non-key attribute evidently.
This Classroom location will depend on the Classroom number, which is actually a
part of the primary key. Thus, the above table is a violation of 2 NF. In order to
change the above table to 2 NF, we have to divide the table into two portions as
follows:

1PRIOO1 South-Al

2PRI001 South-A2

57

1PRIOO1 South-Al

2PRI001 South-A2

| hope, you could visualize that the partial dependency has been removed in the
second table by applying 2 NF. So, the column Class Room Name entirely depends
on the table’s primary key, i.e Class Room Number.

3NF (Third Normal Form)

In the case of 3 NF, it follows the same way that 2 NF functions. Here, the table must
be present in 2 NF before working with 3 NF. Also, a transitive dependency is not
allowed in 3 NF for non-prime attributes. This implies that the non-prime attributes
which do not contain a candidate key will not depend on the rest of the non-prime
attributes in a table. We can conclude transitive dependency is an indirect functional
dependency, i.e A—C (which means A determines C) in which A—»B and B—C (but
the inverse is not valid i.e B—A is invalid) Let’s get a clear understanding of 3 NF with
the following example:

58

Looking at the above table, we can understand that the Employee ID determines
Department ID and Department ID determines the department. Thus, Employee ID
determines Department via Department ID. This proves that we accomplished
transitive function dependency. But, the above structure violates 3 NF because it
does not satisfy the rules of 3 NF. So, we have to divide the tables as below:

1SW15TEO1 15TE01 Hyderaba

59

From the above tables, you could visualize that the entire non-key attributes become

completely dependent on the primary key. As in the first table, Employee Name,
Department ID and Location depends on Employee ID, whereas in the second table,
the Department depends on Department ID.

Boyce Codd NF (BCNF)

BCNF is also called as 3.5 NF because it is an upgrade of 3 NF. Two researchers
Boyce and Codd developed this BCNF concept so as to address some particular
anomalies that that doesn’t fall under the 3 NF category. Like other NF techniques,
BCNF also has certain conditions to be satisfied. First, BCNF should satisfy 3 NF. In
the case of BCNF, if each and every functional dependency, X — Y, then, X will act
as the Super key of that specific table.

For example, have a look at the table below:

1SD17SW01 Java Magesh
1SD17SW03 C++ Praba

1SD17SW05 SQL Lokesh

As per the above table, we can clarify the following:

Any student can select multiple subjects of study

You can have multiple teachers to teach one particular subject.

For every subject, a teacher has to allocated to the student.

In the above table, except for the BCNF, all other NF techniques were satisfied. Let’s
discuss the reason of it. Stud ID and Course of Study provides the primary key. This
implies that the Course of Study column is actually a prime attribute. We could see
yet another dependency here, i.e Name of the Professor— Course of Study.

Here, Course of Study is actually a prime attribute whereas the Name of the
Professor is a nonprime attribute, which is actually a violation of BCNF. Therefore, to
achieve BCNF, we have to separate the table into two portions as Stud ID which is
there already and another new column named Prof ID.

1SD17SWO01 1PF17SWO01

1SD17SW03 1PF17SWO03

1SD17SWO05 1PF17SWO05

In the second table, Prof ID, Name of the Professor and Course of Study will be
present.

61

1PF17SWO01 Magesh Java

1PF17SW03 Praba C++

1PF17SWO05 Lokesh SQL

With this, we achieved BCNF. We thus conclude this tutorial about Normalization in
SQL. I hope you got a better understanding!

Functional dependencies

A functional dependency (FD) is a relationship between two attributes, typically between
the PK and other non-key attributes within a table. For any relation R, attribute Y is
functionally dependent on attribute X (usually the PK), if for every valid instance of X,
that value of X uniquely determines the value of Y. This relationship is indicated by the
representation below :

X——>Y

The left side of the above FD diagram is called the determinant, and the right side is
the dependent. Here are a few examples.

In the first example, below, SIN determines Name, Address and Birthdate. Given SIN,
we can determine any of the other attributes within the table.

SIN -> Name, Address, Birthdate

For the second example, SIN and Course determine the date completed
(DateCompleted). This must also work for a composite PK.

SIN, Course > DateCompleted

The third example indicates that ISBN determines Title.

ISBN ——> Title

Rules of Functional Dependencies

Consider the following table of data r(R) of the relation schema R(ABCDE) shown in
Table 11.1.

A B = D E

al|bli|cl |dl | el

a2z bi1|C2|d2 | el

a3 | b2 | C1 | dl | el

a4 | b2|C2|d2 |el

as b3 C3!dl | el
Table R

As you look at this table, ask yourself: What kind of dependencies can we observe
among the attributes in Table R? Since the values of A are unique (al, a2, a3, etc.), it
follows from the FD definition that:

A—-B A—-C, A-D, A—-E
It also follows that A —BC (or any other subset of ABCDE).

This can be summarized as A —BCDE.
From our understanding of primary keys, A is a primary key.

Since the values of E are always the same (all el), it follows that:
A—-E B—-E C—E D—E

However, we cannot generally summarize the above with ABCD — E because, in
general, A—-E, B—>E, AB—>E.

Other observations:

63

. Combinations of BC are unique, therefore BC — ADE.
. Combinations of BD are unique, therefore BD — ACE.
. If C values match, so do D values.

. Therefore, C —»D

. However, D values don’t determine C values

. So C does not determine D, and D does not determine C.

Looking at actual data can help clarify which attributes are dependent and which are
determinants.

Inference Rules

Armstrong’s axioms are a set of inference rules used to infer all the functional
dependencies on a relational database. They were developed by William W. Armstrong.
The following describes what will be used, in terms of notation, to explain these axioms.

Let R(U) be a relation scheme over the set of attributes U. We will use the letters X, Y,
Z to represent any subset of and, for short, the union of two sets of attributes, instead of
the usual X U'Y.

Axiom of reflexivity

This axiom says, if Y is a subset of X, then X determines Y (see Figure 11.1).

LEY Q *Y,then X =Y

For example, PartNo —> NT123 where X (PartNo) is composed of more than one
piece of information; i.e., Y (NT) and partID (123).

64

Axiom of augmentation

The axiom of augmentation, also known as a partial dependency, says if X determines
Y, then XZ determines YZ for any Z (see Figure 11.2).

If X — Y,then A4 — Y Zforany Z

The axiom of augmentation says that every non-key attribute must be fully dependent
on the PK. In the example shown below, StudentName, Address, City, Prov, and PC
(postal code) are only dependent on the StudentNo, not on the StudentNo and Grade.

StudentNo, Course —> StudentName, Address, City, Prov, PC, Grade, DateCompleted

This situation is not desirable because every non-key attribute has to be fully dependent
on the PK. In this situation, student information is only partially dependent on the PK
(StudentNo).

To fix this problem, we need to break the original table down into two as follows:
Table 1: StudentNo, Course, Grade, DateCompleted

Table 2: StudentNo, StudentName, Address, City, Prov, PC

Axiom of transitivity

The axiom of transitivity says if X determines Y, and Y determines Z, then X must also
determine Z (see Figure 11.3).

The table below has information not directly related to the student; for instance,
ProgramID and ProgramName should have a table of its own. ProgramName is not
dependent on StudentNo; it's dependent on ProgramiD.

StudentNo —> StudentName, Address, City, Prov, PC, ProgramID, ProgramName

This situation is not desirable because a non-key attribute (ProgramName) depends on
another non-key attribute (ProgramiD).

To fix this problem, we need to break this table into two: one to hold information about
the student and the other to hold information about the program.

Table 1: StudentNo —> StudentName, Address, City, Prov, PC, ProgramID

65

Table 2: ProgramID —> ProgramName

However we still need to leave an FK in the student table so that we can identify which
program the student is enrolled in.

Union

This rule suggests that if two tables are separate, and the PK is the same, you may
want to consider putting them together. It states that if X determines Y and X
determines Z then X must also determine Y and Z (see Figure 11.4).

For example, if:

SIN —> EmpName
SIN —> SpouseName

You may want to join these two tables into one as follows:
SIN —> EmpName, SpouseName

Some database administrators (DBA) might choose to keep these tables separated for
a couple of reasons. One, each table describes a different entity so the entities should
be kept apart. Two, if SpouseName is to be left NULL most of the time, there is no need
to include it in the same table as EmpName.

Decomposition

Decomposition is the reverse of the Union rule. If you have a table that appears to
contain two entities that are determined by the same PK, consider breaking them up
into two tables. This rule states that if X determines Y and Z, then X determines Y and X
determines Z separately (see Figure 11.5).

Dependency Diagram

A dependency diagram, shown in Figure 11.6, illustrates the various dependencies that
might exist in a non-normalized table. A non-normalized table is one that has data
redundancy in it.

66

The following dependencies are identified in this table:

e ProjectNo and EmpNo, combined, are the PK.
e Partial Dependencies:

e ProjectNo —> ProjName
e EmpNo —> EmpName, DeptNo,

e ProjectNo, EmpNo —> HrsWork
Transitive Dependency:

e DeptNo —> DeptName
Key Terms

Armstrong’s axioms: a set of inference rules used to infer all the functional
dependencies on a relational databaseDBA: database administrator

decomposition: a rule that suggests if you have a table that appears to contain two
entities that are determined by the same PK, consider breaking them up into two tables

dependent: the right side of the functional dependency diagram
determinant: the left side of the functional dependency diagram

functional dependency (FD): a relationship between two attributes, typically between
the PK and other non-key attributes within a table

non-normalized table: a table that has data redundancy in it

Union: a rule that suggests that if two tables are separate, and the PK is the same,
consider putting them together

Exercises
See Chapter 12.
Attributions

This chapter of Database Design (including images, except as otherwise noted) is a
derivative copy of Armstrong’s axioms by Wikipedia the Free Encyclopedia licensed
under Creative Commons Attribution-ShareAlike 3.0 Unported

67

http://en.wikipedia.org/wiki/Armstrong%27s_axioms
http://creativecommons.org/licenses/by-sa/3.0/

The following material was written by Adrienne Watt:

1. some of Rules of Functional Dependencies
2. Key Terms

Multivalued and join dependencies:-
Multivalued

When existence of one or more rows in a table implies one or more other rows in the same
table, then the Multi-valued dependencies occur.

If a table has attributes P, Q and R, then Q and R are multi-valued facts of P.

It is represented by double arrow —

->->

For our example:

P->->Q
P->->R

In the above case, Multivalued Dependency exists only if Q and R are independent attributes.
A table with multivalued dependency violates the 4NF.

Example

Let us see an example &mins;

<Student>

StudentName CourseDiscipline Activities
Amit Mathematics Singing
Amit Mathematics Dancing
Yuvraj Computers Cricket

68

Akash Literature Dancing

Akash Literature Cricket

Akash Literature Singing

In the above table, we can see Students Amit and Akash have interest in more than one
activity.

This is multivalued dependency because CourseDiscipline of a student are independent of
Activities, but are dependent on the student.

Therefore, multivalued dependency -

StudentName ->-> CourseDiscipline
StudentName ->-> Activities

The above relation violates Fourth Normal Form in Normalization.

To correct it, divide the table into two separate tables and break Multivalued Dependency -

<StudentCourse>

StudentName CourseDiscipline
Amit Mathematics

Amit Mathematics
Yuvraj Computers

Akash Literature

Akash Literature

69

Akash Literature

<StudentActivities>

StudentName Activities
Amit Singing
Amit Dancing
Yuvraj Cricket
Akash Dancing
Akash Cricket
Akash Singing

This breaks the multivalued dependency and now we have two functional dependencies -

StudentName -> CourseDiscipline
StudentName - > Activities

Join dependency

If a table can be recreated by joining multiple tables and each of this table have a
subset of the attributes of the table, then the table is in Join Dependency. It is a
generalization of Multivalued Dependency

Join Dependency can be related to 5NF, wherein a relation is in 5NF, only if it is already
in 4NF and it cannot be decomposed further.

Example

70

<Employee>

EmpName EmpSkills EmpJob (Assigned Work)
Tom Networking EJOO1
Harry Web Development EJOO2
Katie Programming EJO02

The above table can be decomposed into the following three tables; therefore it is not in
5NF:

<EmployeeSkills>

EmpName EmpSkills

Tom Networking

Harry Web Development
Katie Programming

<EmployeeJob>

EmpName EmpJob
Tom EJOO1
Harry EJOO2

71

Katie EJOO2

<JobSkills>

EmpSkills EmpJob
Networking EJOO1
Web Development EJOO2
Programming EJOO2

Our Join Dependency -
{(EmpName, EmpSkills), (EmpName, EmpJob), (EmpSkills, EmpJob)}
The above relations have join dependency, so they are not in 5NF. That would mean

that a join relation of the above three relations is equal to our original
relation <Employee>.

Normal Forms: (1 NF, 2 NF, 3NF, BCNF, 4NF, and 5NF)

The next sections of this paper will describe each of the normal forms and how they are
applied. There will be examples used to describe the form and its application. The
examples chosen are obviously wrong and are designed to clearly demonstrate the
normal form being discussed.

In your actual design work the normalization problems will probably be more subtle and
require a much more careful study to discover and repair.

1% Normal Form (1NF)

Reduce entities to first normal form (1NF) by removing repeating or multi-valued
attributes to another, child entity.

To understand 1 Normal Form we will use the table design below.

72

Customer

CustlD
Address
Phone
Contact1
Contact?
Contact3

To discover the problem in this design we must consider the domains for the fields in
the table. The CustID is defined as the customer Primary key ID, the Name is the name
of the customer, Contactl is the name of a contact person, Contact2 is the name of a
contact person, and Contact3 is the name of a contact person.

The fact that Contactl, 1, and 3 all have the same domain definition proves that in fact
there is only one attribute, contact person, and that we need multiple values for that
attribute. This is a multi-valued attribute.

The 1° NF design for this situation is shown below.

Customer

CustID

Address

Phone

Contacts
ContactID
. CustID

ContactName
Phone

Notice the creation of the new entity for Contacts and the relation of that entity to the
original Customer entity. Using this new design the customer can have any number of
contacts from none to the capacity of the table storing the contact names.

What about the client who tells us that their customer will never have more than three
contact names? Do we really need to do this for those situations?

73

Well, reread what | said earlier about clients and the word never. Besides that, if we
provide the three fields for contact names and most customers have only one name, we
are wasting a lot of space. For a contact name of 40 characters and 1 million customer
records that would amount to approximately 40 MB of wasted space.

Also, the first customer that comes along with four or more contact names would require
that the user either use two customer records, not store all of the contact names, or pay
for a revision to the data design to allow the fourth name. With the 1% Normal Form
structure none of these things are an issue. If the customer has only one contact then
there is only one record in the Contacts table. If the customer has 300 contact names,
then there are 300 records in the contacts table.

Reduce entities in 1NF to 2NF by removing attributes that are not dependent on
the whole primary key.

2"Y Normal Form (2NF)

The figure below will be used to study this normal form.

Invoice Details

CustlD
lteml|D
Price
Cluantity

The primary key for the invoice details table in the figure is the combination of InvNo
and LineNo. The two fields together comprise the primary key. 2" NF deals with non-
key attributes that are not dependent on the entire primary key but rather only on part of
it.

The ItemID and Price Quantity are dependent on the whole primary key. You cannot
know the item sold or its quantity price break without knowing the invoice and which line
of the invoice you are interested in.

However the CustID will remain the same for all lines on an invoice. This means that
CustID is dependent on the InvNo only and not ion the LineNo. CustID is dependent on
part of the primary key.

To fix this we move the CustID field to another table where it is dependent on the whole
primary key.

74

Invoice

InviNo
CustlD
Invoice Details
InvNO
> ltemlID
Price
Cluantity

3" Normal Form (3NF)

Reduce entities in 2NF to 3NF by removing attributes that depend on other, non-key
attributes (other than alternate keys).

The golden rule of relational databases is, “the key, the whole key, and nothing but the
key”. The 3" normal form deals with attributes that are codependent on the primary key
and another, non-key, attribute. The figure below shows a table design that violates the
3" normal form.

Furchase Order

FOMNurm
VendorN UM
VendorCity

With the 3™ normal form we are trying to identify non-key attributes that have a
dependency on other non-key attributes (other than alternate keys). In figure 13 the
there are four non-key attributes that are all dependent on the primary key, that is to
know the VendorID, VendorCity, Date, or Terms of a purchase order you must know
which purchase order you are looking at. However the VendorCity is also dependent on
the VendorID for its value. That is if you change the VendorID on a purchase order the
VendorCity will also need to change.

75

The solution for this example is shown in below.

Purchase Order

POMNum
VendorMNUM
Vendor
VendorNUM
> VendorCity

We have moved the VendorCity out of the purchase order table and put it in the Vendor
table where the VendorlID is the primary key.

Perhaps you have heard someone say that it is not a good design, in a relational
database, to store the results of a calculation in a table. Why not? What rule does this
break? It violates 3™ normal form.

If I have a table for invoice detail lines and it has a UnitPrice field, a quantity field, and a
TotalPrice field (which is calculated by multiplying the UnitPrice by the Quantity) then |
have at least one field that is codependent, the TotalPrice field. The TotalPrice for a
line is dependent on the line number, but it is also dependent on both the UnitPrice and
the Quantity. If either UnitPrice or Quantity changes then the TotalPrice will also need
to change.

Y) Is 3rd Normal Form good enough?

| have often heard people say that 3™ normal form is good enough; perhaps you have
too. Is this true? Is 3" normal form good enough? Well, | would have to ask that if

3'Y normal form was as far as it is necessary to go with normalization then why are there
three more normal forms after 3'9?

n truth, the next three normal forms only apply in certain specific situations and if none
of those situations exist in the data design, then 3" normal form is 5™ normal form an
fully normalized.

Z) Boyce-Codd Normal Form (BCNF)

Reduce entities in 3NF to BCNF by ensuring that they are in 3NF for any feasible choice
of candidate key as primary key.

76

The next normal form is named after the two people who first described it, Boyce and
Codd. This normal form is only required for tables that have more than one candidate
for the primary key. The rule is simple; if the table is in 3" normal form for the primary
key being used, insure that it is also in 3" normal form for any of the alternate keys as
well.

Imagine an employee table that has attributes for Social Security Number, Employee
Clock Number, and Employee ID (a surrogate primary key). 3™ normal form would
apply the first three rules using the Employee ID as the primary key. Boyce-Codd
normal form would go back and apply the first three rules using the Social Security
Number and then using the Employee Clock Number as the primary key. When the
table structure is in 3" normal form no matter which candidate for primary key is used,
then it is in Boyce-Codd normal form.

4™ Normal Form (4NF)

Reduce entities in BCNF to 4NF by removing any independently multi-valued
components of the primary key to multiple new parent entities.

4™ normal form is only applicable when the primary key is comprised of two or more
attributes. With a primary key of only one attribute there is no need to check 4™ normal
form. 4™ and 5™ normal forms resolve problems within the primary key itself.

In figure 15 we have a design that is meant to record and track employees, their skills,
and their objectives. The primary key for the table is the combination of the Employee
ID, the Skill ID, and the Objective ID. The problem with this design is the independence
of the skill and objective attributes comprising the primary key.

Employee-skill-Objective

EmployeeMame
SKill
Objective

To really understand the nature of the problem, let’'s consider some data from this table:

EmpID|____Skill
Jones Accounting More Money
Jones /Accounting Master’s Degree

77

Jones Public SpeakingMore Money
Jones Public SpeakingMaster’s Degree

Looking at the sample data, what would need to happen if Jones was to tell you he had
an objective of getting a doctorate degree too? How many record would you need to ad
for that change? What if he received his Masters Degree? Again how many records
would need to change? Both situations require that more than one record change in
order to record the change in the data.

Below is shown the same information being recorded, but the design is in 4™ normal
form. Any of the events asked about in the previous paragraph will only involve one
record in the new design.

Employee-Skill Employee-Objective

EmployeeMame
SKill

EmployeeName
Objective

5" Normal Form (5NF)

Reduce entities in 4NF to 5NF by removing pair-wise cyclic dependencies (appearing
within composite primary keys with three or more component attributes) to three or
more new parent entities.

The 5™ normal form is another one that is only required when the primary key has more
than one attribute. In fact, with 5™ normal form the primary key must use three or more
attributes.

Reading the definition for this normal form can be stress inducing for sure. If you take it
apart and understand each piece separately it really isn’'t that complex. The definition
refers to pair-wise cyclic dependencies. Pair-wise means taking two attributes at a time,
dependencies is referring to the value of one attribute being dependent on the value of
another. The cyclic is simply saying that in a primary key of three attributes you need
the value of the other two to determine the value of any one of them. The figure below
shows an example of a 5™ normal form problem.

78

Buyer-YYendor-ltem

BuyerMName
VendorName
ltemMName

LastPurchase
PricePaid

This design is to record information about a retail buying operation. The requirement is
to track the buyers, from whom do they buy, and what do they buy. The table design
has the combination of Buyer, Vendor, and Item as the primary key.

If you analyze the relationship between the components of the primary key in this
design you will realize that if you want to know the buyer, you must first determine the
vendor and item. If you want to know the vendor, you need the buyer and item. Finally
if you want the item, you must know the vendor and buyer. Notice the pair wise (you
always need to know two) cyclic (no matter which one you need it is the other two that it
depends on) dependency.

To appreciate the nature of the difficulty having a table that is in violation of 5™ normal
form will present to you, consider the following sample data.

Mary Jordache Jeans
Mary Jordache Sneakers
Sally Jordache Jeans
Mary Liz Claiborne Blouses
Sally Liz Claiborne Blouses

Like 4™ normal form, the major problem areas with 5™ normal form have to do with data
updates. For example, if Liz Claiborne were to introduce a new line of Jeans, how
many records would need to be added to this table to reflect that change? Two, since
both Mary and Sally buy from Claiborne and both Mary and Sally buy Jeans. What if
Jordache dropped their line of jeans? Again, two records need to be modified (actually
deleted) to reflect this change.

Below is the design reduced to the 5™ normal form.

79

Buyer-Vendor

Vendor-Product

BuyerName
VendorName
ContractNum

VendorName
Product
LastPurchase
PricePaid

Buyer-Product

BuyerName
Product
LastPurchase
PricePaid

80

Unit - IV

SQL

SQL Constructs

SQL Tutorial of w3resource aims to meet the need of a beginner to learn SQL without
any prior experience. Having said that, it by no means superficial. On the contrary, it
offers all the material one needs to successfully build a database and write SQL queries
ranging from a one liner like "SELECT * FROM table_name" to fairly non-trivial ones
taking multiple tables in the account.

At the outset, we need to tell you, this SQL Tutorial adheres to SQL:2003 standard of
ANSI. This is important because if you are learning something as important as SQL,
there is no point learning if you don't know which version or standard you are studying.
We have diligently added as many features as possible while creating this SQL Tutorial.
There is Syntax, Query, Explanation of a query and pictorial presentation to help you
understand concepts better. On top of these, we have hundreds of Exercises with an
online editor, quizzes. So you may practice concepts and queries without leaving your
browser.

Contents:

e Introduction

e Whatis SQL?

e History of SQL

e SQL Standard Revisions

e Constructs of SQL

e Some Key terms of SQL 2003

e Database and Table Manipulation
e Tutorial objectives

e Summary

81

https://www.w3resource.com/sql-exercises
https://w3resource.com/w3skills/sql-beginner/
https://www.w3resource.com/sql/tutorials.php#INTRODUC
https://www.w3resource.com/sql/tutorials.php#SQL
https://www.w3resource.com/sql/tutorials.php#HISTSQL
https://www.w3resource.com/sql/tutorials.php#SQLSTANDARD
https://www.w3resource.com/sql/tutorials.php#SQLCONS
https://www.w3resource.com/sql/tutorials.php#SQLKEYTERMS
https://www.w3resource.com/sql/tutorials.php#SQLDBASE
https://www.w3resource.com/sql/tutorials.php#SQLOBJ
https://www.w3resource.com/sql/tutorials.php#SQLSUMMARY

Introduction

In June 1970 Dr. E. F. Codd published the paper, "A Relational Model of Data for Large
Shared Data Banks" in the Association of Computer Machinery (ACM) journal. Codd's
model is now accepted as the definitive model for relational database management
systems (RDBMS).

Using Codd's model the language, Structured English Query Language (SEQUEL) was
developed by IBM Corporation in San Jose Research Center. The language was first
called SEQUEL but Official pronunciation of SQL is ESS QUE ELL.

In 1979 Oracle introduced the first commercially available implementation of SQL. Later
other players join in the race. Today, SQL is accepted as the standard RDBMS
language.

Note: If you are not habituated with database management system your can learn
from here.

What is SQL?

SQL stands for Structured Query Language and it is an ANSI (American National
Standards Institute) standard computer language for accessing and manipulating
database systems. It is used for managing data in relational database management
system which stores data in the form of tables and relationship between data is also
stored in the form of tables. SQL statements are used to retrieve and update data in a
database.

SQL works with database programs like DB2, MySQL, PostgreSQL, Oracle, SQLite,
SQL Server, Sybase, MS Access and much more. There are many different versions of
the SQL language, but to be in compliance with the ANSI standard, they support the
major keyword such as SELECT, UPDATE, DELETE, INSERT, WHERE, and others.
The following picture shows the communicating with an RDBMS using SQL.

82

https://www.w3resource.com/slides/database-management-system.php
https://www.w3resource.com/mysql/mysql-tutorials.php
https://w3resource.com/PostgreSQL/tutorial.php
https://www.w3resource.com/oracle/index.php
https://www.w3resource.com/sqlite/

SQL statement

Statement sent to
RDBMS server

SELECT region_name
FROM regions;

REGION_NAME

Europe

Americas

Asia

Middle East and Africa
row(s) 1-4 ofd

(€ wiresource.com

History of SQL
Here is the year wise development history :

e 1970 E.F. Codd publishes Definition of Relational Model

e 1975 Initial version of SQL Implemented (D. Chamberlin)

o IBM experimental version: System R (1977) w/revised SQL

e IBM commercial versions: SQL/DS and DB2 (the early 1980s)
e Oracle introduces commercial version before IBM's SQL/DS

o INGRES 1981 & 85

o ShareBase 1982 & 86

83

https://www.w3resource.com/sql/sql-basic/codd-12-rule-relation.php

o Data General (1984)
e Sybase (1986)
e Dby 1992 over 100 SQL products

SQL Standard Revisions

« SEQUEL/Original SQL - 1974

e SQL/86 - Ratification and acceptance of a formal SQL standard by ANSI
(American National Standards Institute) and ISO (International Standards
Organization).

e SQL/92 - Major revision (ISO 9075), Entry Level SQL-92 adopted as FIPS 127-2.

e SQL/99 - Added regular expression matching, recursive queries (e.g. transitive
closure), triggers, support for procedural and control-of-flow statements, non-
scalar types, and some object-oriented features (e.g. structured types).

e SQL/2003 - Introduced XML-related features (SQL/XML), Window functions,
Auto generation.

e SQL/2006 - Lots of XML Support for XQuery, an XML-SQL interface standard.

e SQL/2008 - Adds INSTEAD OF triggers, TRUNCATE statement.

Constructs of SQL

Here is list of the key elements of SQL along with a brief description:

e Queries : Retrieves data against some criteria.

« Statements : Controls transactions, program flow, connections, sessions, or
diagnostics.

o Clauses : Components of Queries and Statements.

o Expressions : Combination of symbols and operators and a key part of the SQL
statements.

« Predicates : Specifies conditions.

Some Key terms of SQL 2003

84

To know the key terms of SQL 2003, you should know the statement classes of both
SQL 92 AND SQL 2003, since both are used to refer SQL features and statements.
In SQL 92, SQL statements are grouped into following categories:

o Data manipulation : The Data Manipulation Language (DML) is the subset of
SQL which is used to add, update and delete data.

« Data definition : The Data Definition Language (DDL) is used to manage table
and index structure. CREATE, ALTER, RENAME, DROP and TRUNCATE
statements are to name a few data definition elements.

o Data control : The Data Control Language (DCL) is used to set permissions to
users and groups of users whether they can access and manipulate data.

e Transaction : A transaction contains a number of SQL statements. After the
transaction begins, all of the SQL statements are executed and at the end of the
transaction, permanent changes are made in the associated tables.

e Procedure : Using a stored procedure, a method is created which contains
source code for performing repetitive tasks.

In SQL 2003 statements are grouped into seven categories which are called classes.

See the following table :

Class

SQL data statements

SQL connection statements

SQL schema statements

SQL control statements

Example

SELECT, INSERT, UPDATE, DELETE

CONNECT, DISCONNECT

ALTER, CREATE, DROP

CALL, RETURN

85

SQL diagnostic statements GET DIAGNOSTICS

SQL session statements SET CONSTRAINT

SQL transaction statements COMMIT, ROLLBACK

PL-SQL, TSQL and PL/pgSQL

e PL/SQL - Procedural Language/Structured Query Language (PL/SQL) is Oracle
Corporation's procedural extension language for SQL and the Oracle relational
database.

e TSQL - Transact-SQL (T-SQL) is Microsoft's and Sybase's proprietary extension
to SQL.

e PL/pgSQL - Procedural Language/PostgreSQL(PL/pgSQL) is a procedural
programming language supported by the PostgreSQL.

Database and Table Manipulation

Command Description

CREATE DATABASE database _name Create a database
DROP DATABASE database _name Delete a database
CREATE TABLE "table_name" ("column_1" Create atable in a

"column_1 data_type", "column_2" "column_2_ data_type",...) database.

ALTER TABLE table_name ADD column_name Add columns in an

86

column_datatype

ALTER TABLE table_name DDROP column_name
column_datatype

DROP TABLE table_name

existing table.

Delete columns in an
existing table.

Delete a table.

Data Types:

Data Type Description

CHARACTER(Nn) Character string, fixed length n.

CHARACTER Variable length character string, maximum length n.
VARYING(n) or

VARCHAR(N)

BINARY(n) Fixed-length binary string, maximum length n.
BOOLEAN Stores truth values - either TRUE or FALSE.

BINARY VARYING(n) or
VARBINARY((n)

INTEGER(p)

SMALLINT

Variable length binary string, maximum length n.

Integer numerical, precision p.

Integer numerical precision 5.

87

INTEGER

BIGINT

DECIMAL(p, s)

NUMERIC(p, s)

FLOAT(p)

REAL

FLOAT

DOUBLE PRECISION

DATE
TIME
TIMESTAMP

INTERVAL

COLLECTION (ARRAY,

Integer numerical, precision 10.

Integer numerical, precision 19.

Exact numerical, precision p, scale s.

Exact numerical,
precision p, scale s.
(Same as DECIMAL).

Approximate numerical, mantissa precision p.

Approximate numerical
mantissa precision 7.

Approximate numerical
mantissa precision 16.

Approximate numerical
mantissa precision 16.

Composed of a number of integer fields, representing an
absolute point in time, depending on sub-type.

Composed of a number of integer fields, representing a

period of time, depending on the type of interval.

ARRAY (offered in SQL99) is a set-length and ordered the

88

MULTISET) collection of elements.

XML Stores XML data. It can be used wherever a SQL data type
is allowed, such as a column of a table.

Index Manipulation:

Command Description
CREATE INDEX index_name ON table_name (column_name_1, Create a simple
column_name_2, ...) index.

CREATE UNIQUE INDEX index_name ON table_name Create a unique
(column_name_1, column_name_2, ...) index.

DROP INDEX table_name.index_name Drop a index.

SQL Operators:

Operators Description

SQL Arithmetic operators are addition(+), subtraction(-), multiplication(*) and
Arithmetic division(/). The + and - operators can also be used in date arithmetic.
Operator

SQL A comparison (or relational) operator is a mathematical symbol which
Comparison

89

Operator

SQL
Assignment
operator

SQL Bitwise
Operator

SQL Logical
Operator

SQL Unary
Operator

is used to compare two values.

In SQL the assignment operator (=) assigns a value to a variable or of
a column or field of a table.

The bitwise operators are & (Bitwise AND), | (Bitwise OR) and " (
Bitwise Exclusive OR or XOR). The valid datatypes for bitwise
operators are BINARY, BIT, INT, SMALLINT, TINYINT, and
VARBINARY.

The Logical operators are those that are true or false. The logical
operators are AND , OR, NOT, IN, BETWEEN, ANY, ALL, SOME,
EXISTS, and LIKE.

The SQL Unary operators perform such an operation which contain
only one expression of any of the datatypes in the numeric datatype
category.

Insert, Update and Delete:

Command Description

INSERT INTO table_name VALUES (value 1, Insert new rows into a
value 2,....) table.

INSERT INTO table_name (columnl, column2,...)

VALUES (value_1, value_2,....)

UPDATE table_name SET column_name_1 = Update one or several

new_value_1, column_name_2 = new_value_2 WHERE columns in rows.

90

column_name = some_value

DELETE FROM table_name WHERE column_name = Delete rows in a table.
some_value

Select:

Command Description

SELECT column_name(s) FROM
table_name

SELECT * FROM table_name

SELECT DISTINCT column_name(s)
FROM table_name

SELECT column_name(s) FROM

table_name WHERE column operator
value AND column operator value OR
column operator value AND (... OR ...)

SELECT column_name(s) FROM
table_name WHERE column_name IN
(valuel, valuez, ...)

SELECT column_name(s) FROM
table_name ORDER BY row_1, row_2
DESC, row_3 ASC, ...

Select data from a table.

Select all data from a table.

Select only distinct (different) data from a
table.

Select only certain data from a table.

The IN operator may be used if you know the
exact value you want to return for at least one
of the columns.

Select data from a table with sort the rows.

91

SELECT column_1, ...,
SUM(group_column_name) FROM
table_name GROUP BY
group_column_name

SELECT column_name(s) INTO
new_table name FROM
source_table_name WHERE query

SELECT column_name(s) IN
external_database name FROM
source_table_name WHERE query

Functions:

The GROUP BY clause is used with the
SELECT statement to make a group of rows
based on the values of a specific column or
expression. The SQL AGGREGATE function
can be used to get summary information for
every group and these are applied to
individual group.

Select data from table(S) and insert it into
another table.

Select data from table(S) and insert it in
another database.

SQL Description
functions

Aggregate This function can produce a single value for an entire group or table.
Function Some Aggregate functions are -

e SQL Count function
e SQL Sum function
e SQL Avg function

e SQL Max function

e SQL Min function

Arithmetic A mathematical function executes a mathematical operation usually
Function based on input values that are provided as arguments, and return a
numeric value as the result of the operation.

92

Some Arithmetic functions are -

e abs()

o ceil()

o floor()

o exp()

. |n()

o« mod()

e power()

e sqrt()
Character A character or string function is a function which takes one or more
Function characters or numbers as parameters and returns a character value.

Some Character functions are -

e lower()

 upper()

e trim()

o translate()
Joins:
Name Description
SQL The SQL EQUI JOIN is a simple SQL join uses the equal sign(=) as the
EQUI comparison operator for the condition. It has two types - SQL Outer join
JOIN and SQL Inner join.

SQL INNER JOIN returns all rows from tables where the key record of one
table is equal to the key records of another table.

SQL OUTER JOIN returns all rows from one table and only those rows
from the secondary table where the joined condition is satisfying i.e. the
columns are equal in both tables.

93

SQL NON The SQL NON EQUI JOIN is a join uses comparison operator other than

EQUI the equal sign like >, <, >=, <= with the condition.
JOIN

Union:

Command Description

SQL_Statement 1 UNION
SQL_Statement_2

SQL_Statement_1 UNION ALL
SQL_Statement_2

Select all different values from SQL_Statement_1
and SQL_Statement_2

Select all values from SQL_Statement_1 and
SQL_Statement_2

View:

Command Description

CREATE VIEW view_name AS SELECT Create a virtual table based on the
column_name(s) FROM table_name WHERE result-set of a SELECT statement.
condition

Tutorial objectives

SQL tutorial of w3resource is a comprehensive tutorial to learn SQL. We have followed
SQL:2003 standard of ANSI. There are hundreds of examples given in this tutorial.
Output are shown with Oracle 10G/MySQL. Often outputs are followed by a pictorial

%94

presentation and explanation for better understanding. You will hardly find a vendor
neutral SQL tutorial covering SQL in such great detail. Following is a list of the features
we have included in our tutorials :

e A simple but thorough description.

e SQL Syntax.

o Description of the Parameters used in the SQL command.
e Sample table with data.

e SQL command.

« Explanation of the SQL command.

e The output of the SQL command.

e Model database.

« Online practice.

Summary

e SQL stands for Structured Query Language.

e SQL is easy to learn.

e SQL is an ANSI standard computer language.
e SOQL allows us to access a database.

e SQL use to access and manipulate data in various databases like Oracle,
Sybase, Microsoft SQL Server, DB2, Access, MySQL, PostgreSQL and other
database systems.

e SQL execute queries against a database.
e« SQL can insert new records into a database.
e SQL can update records in a database.

e SQL can delete records from a database.

95

Practice SQL Exercises

SQL Exercises, Practice, Solution
SQL Retrieve data from tables [33 Exercises]
SQL Boolean and Relational operators [12 Exercises]
SQL Wildcard and Special operators [22 Exercises]
SQL Aggregate Functions [25 Exercises]
SQL Formatting query output [10 Exercises]
SQL Quering on Multiple Tables [7 Exercises]
FILTERING and SORTING on HR Database [38 Exercises]
SQL JOINS
o SQL JOINS [29 Exercises]
o SQL JOINS on HR Database [27 Exercises]
SQL SUBQUERIES
o SQL SUBQUERIES [39 Exercises]
o SQL SUBQUERIES on HR Database [55 Exercises]
SQL Union[9 Exercises]
SQL View[16 Exercises]
SQL User Account Management [16 Exercise]
Movie Database
o BASIC gueries on movie Database [10 Exercises]
o SUBQUERIES on movie Database [16 Exercises]
o JOINS on movie Database [24 Exercises]
Soccer Database
o Introduction

o BASIC queries on soccer Database [29 Exercises]

96

https://www.w3resource.com/sql-exercises/index.php
https://www.w3resource.com/sql-exercises/sql-retrieve-from-table.php
https://www.w3resource.com/sql-exercises/sql-boolean-operators.php
https://www.w3resource.com/sql-exercises/sql-wildcard-special-operators.php
https://www.w3resource.com/sql-exercises/sql-aggregate-functions.php
https://www.w3resource.com/sql-exercises/sql-fromatting-output-exercises.php
https://www.w3resource.com/sql/s/sql-exercises/ql-exercises-quering-on-multiple-table.php
https://www.w3resource.com/sql-exercises/sorting-and-filtering-hr/index.php
https://www.w3resource.com/sql-exercises/sql-joins-exercises.php
https://www.w3resource.com/sql-exercises/joins-hr/index.php
https://www.w3resource.com/sql-exercises/subqueries/index.php
https://www.w3resource.com/sql-exercises/sql-subqueries-exercises.php
https://www.w3resource.com/sql-exercises/union/sql-union.php
https://www.w3resource.com/sql-exercises/view/sql-view.php
https://www.w3resource.com/sql-exercises/sql-user-management.php
https://www.w3resource.com/sql-exercises/movie-database-exercise/basic-exercises-on-movie-database.php
https://www.w3resource.com/sql-exercises/movie-database-exercise/subqueries-exercises-on-movie-database.php
https://www.w3resource.com/sql-exercises/movie-database-exercise/joins-exercises-on-movie-database.php
https://www.w3resource.com/sql-exercises/soccer-database-exercise/index.php
https://www.w3resource.com/sql-exercises/soccer-database-exercise/basic-exercises-on-soccer-database.php

o SUBQUERIES on soccer Database [33 Exercises]
o JOINS queries on soccer Database [61 Exercises]
o Hospital Database
o Introduction
o BASIC, SUBQUERIES, and JOINS [39 Exercises]
« Employee Database
o BASIC queries on employee Database [115 Exercises]
o SUBQUERIES on employee Database [77 Exercises]

« More to comel!

SQL Join

A SQL Join statement is used to combine data or rows from two or more tables based on
a common field between them. Different types of Joins are:

INNER JOIN

LEFT JOIN

RIGHT JOIN

e FULLJOIN

Consider the two tables below:
Student

97

https://www.w3resource.com/sql-exercises/soccer-database-exercise/subqueries-exercises-on-soccer-database.php
https://www.w3resource.com/sql-exercises/soccer-database-exercise/joins-exercises-on-soccer-database.php
https://www.w3resource.com/sql-exercises/hospital-database-exercise/index.php
https://www.w3resource.com/sql-exercises/hospital-database-exercise/sql-exercise-on-hospital-database.php
https://www.w3resource.com/sql-exercises/employee-database-exercise/index.php
https://www.w3resource.com/sql-exercises/employee-database-exercise/subqueries-exercises-on-employee-database.php

ROLL NO NAME ADDRESS PHONE Age
1 HARSH DELHI 0000000 18
2 PRATIK BIHAR SOOCO0000N 19
3 RIYANKA SILIGURI | swoooooono 20
4 DEEP RAMNAGAR | 300000000 18
6 SAPTARHI KOLKATA | X0000000K 19
6 DHANRAJ | BARABAJAR | XXXXNXXXXX 20
7 ROHIT BALURGHAT | XXX000000 18
8 NIRAJ ALIPUR 0000000 19

StudentCourse

98

COURSE_ID ROLL_NO
1 1
2 2
2 3
3 4
1 2
4 9
o 10
4 11

The simplest Join is INNER JOIN.

1. INNER JOIN: The INNER JOIN keyword selects all rows from both the tables as
long as the condition satisfies. This keyword will create the result-set by combining
all rows from both the tables where the condition satisfies i.e value of the common
field will be same.

Syntax:

SELECT tablel.columnl,tablel.column2,table2.columni,....
FROM tablel
INNER JOIN table2

ON tablel.matching_column = table2.matching_column;

tablel: First table.
table2: Second table

matching_column: Column common to both the tables.

99

Note: We can also write JOIN instead of INNER JOIN. JOIN is same as INNER
JOIN.

Table A Table B

Example Queries(INNER JOIN)
This query will show the names and age of students enrolled in different
courses.

SELECT StudentCourse.COURSE_ID, Student.NAME, Student. AGE FROM
Student

INNER JOIN StudentCourse
ON Student.ROLL_NO = StudentCourse.ROLL_NO;

Output:

2. LEFT JOIN: This join returns all the rows of the table on the left side of the join
and matching rows for the table on the right side of join. The rows for which there
is no matching row on right side, the result-set will contain null. LEFT JOIN is
also known as LEFT OUTER JOIN.Syntax:

3. SELECT tablel.columnl,tablel.column2,table2.columni,....
4. FROM tablel

5. LEFT JOIN table2

100

6. ON tablel.matching_column = table2.matching_column;
7

8.

9. tablel: First table.

10.table2: Second table
11.matching_column: Column common to both the tables.

Note: We can also use LEFT OUTER JOIN instead of LEFT JOIN, both are same.

Table A Table B

Example Queries(LEFT JOIN):

SELECT Student.NAME,StudentCourse.COURSE_ID
FROM Student

LEFT JOIN StudentCourse

ON StudentCourse.ROLL_NO = Student.ROLL_NO;

Output:

101

https://i.stack.imgur.com/VkAT5.png

NAME COURSE_ID
HARSH 1
PRATIK 2
RIYANKA 2
DEEP 3
SAPTARHI 1
DHAMRAJ NULL
ROHIT NULL
NIRAJ NULL

12.RIGHT JOIN: RIGHT JOIN is similar to LEFT JOIN. This join returns all the rows of
the table on the right side of the join and matching rows for the table on the left side
of join. The rows for which there is no matching row on left side, the result-set will
contain null. RIGHT JOIN is also known as RIGHT OUTER JOIN.Syntax:

13.SELECT tablel.columnl,tablel.column2,table2.columni,....

14. FROM tablel

15.RIGHT JOIN table2

16.0ON tablel.matching_column = table2.matching_column;

17.
18.
19.tablel: First table.

20.table2: Second table
21.matching_column: Column common to both the tables.
Note: We can also use RIGHT OUTER JOIN instead of RIGHT JOIN, both are

same.

102

Table A Table B

Example Queries(RIGHT JOIN):

SELECT Student.NAME,StudentCourse.COURSE_ID
FROM Student

RIGHT JOIN StudentCourse

ON StudentCourse.ROLL_NO = Student.ROLL_NO;
Output:

NAME COURSE_ID
HARSH 1
PRATIK 2

RIYANKA 2
DEEFP 3
SAPTARHI 1

NULL 4

NULL o

NULL 4

103

22.FULL JOIN: FULL JOIN creates the result-set by combining result of both LEFT
JOIN and RIGHT JOIN. The result-set will contain all the rows from both the tables.
The rows for which there is no matching, the result-set will
contain NULL values.Syntax:

23.SELECT tablel.columnl,tablel.column2,table2.columni,....

24.FROM tablel

25.FULL JOIN table2

26.0N tablel.matching_column = table2.matching_column;

27.

28.

29.tablel: First table.

30.table2: Second table

31.matching_column: Column common to both the tables.

Table A Table B

Example Queries(FULL JOIN):

SELECT Student.NAME,StudentCourse.COURSE_ID
FROM Student

FULL JOIN StudentCourse

ON StudentCourse.ROLL_NO = Student.ROLL_NO;

104

Output:

NAME COURSE_ID
HARSH 1
PRATIK 2
RIYANKA 2
DEEP 3
SAFTARHI 1
DHANRAJ NULL
ROHIT NULL
NIRAJ NULL
NULL 9
NULL 10
NULL 11

Multiple Table Queries

It's sometimes difficult to know which SQL syntax to use when combining data that
spans multiple tables. I'll discuss some of the more frequently used methods for
consolidating queries on multiple tables into a single statement.

SQL syntax

If you need a refresher on SQL syntax, read these articles:
"SQL Basics I: Data queries” covers database terminology and the four basic query

types.
"SQL basics: SELECT statement options" covers the SELECT statement in detail and

explains aggregate functions.

105

https://www.techrepublic.com/article.jhtml?id=u00320020531dol01.htm
https://www.techrepublic.com/article.jhtml?id=u00320020628dol01.htm

The sample queries in this article adhere to the SQL92 ISO standard. Not all database
manufacturers follow this standard, and many have made enhancements that can yield
unexpected results. If you’re uncertain about support for these concepts in your
database, please refer to your manufacturer’'s documentation.

SELECT

A simple SELECT statement is the most basic way to query multiple tables. You can
call more than one table in the FROM clause to combine results from multiple tables.
Here’s an example of how this works:

SELECT tablel.columnl, table2.column2 FROM tablel, table2 WHERE tablel.columnl
= table2.columnl;

In this example, | used dot notation (tablel.columnl) to specify which table the column
came from. If the column in question only appears in one of the referenced tables, you
don’t need to include the fully qualified name, but it may be useful to do so for
readability.

Tables are separated in the FROM clause by commas. You can include as many tables
as needed, although some databases have a limit to what they can efficiently handle
before introducing a formal JOIN statement, which is described below.

This syntax is, in effect, a simple INNER JOIN. Some databases treat it exactly the
same as an explicit JOIN. The WHERE clause tells the database which fields to
correlate, and it returns results as if the tables listed were combined into a single table
based on the provided conditions. It's worth noting that your conditions for comparison
don’t have to be the same columns you return as your result set. In the example
above, tablel.columnl and table2.columnl are used to combine the tables,

but table2.column2 is returned.

You can extend this functionality to more than two tables using AND keywords in the
WHERE clause. You can also use such a combination of tables to restrict your results
without actually returning columns from every table. In the example below, table3 is
matched up with table1, but | haven’t returned anything from table3 for display. I've
merely checked to make sure the relevant column from tablel exists in table3. Note
that table3 needs to be referenced in the FROM clause for this example.

SELECT tablel.columnl, table2.column2 FROM tablel, table2, table3 WHERE
tablel.columnl = table2.columnl AND tablel.columnl = table3.columni;

Be warned, however, that this method of querying multiple tables is effectively an
implied JOIN. Your database may handle things differently, depending on the
optimization engine it uses. Also, neglecting to define the nature of the correlation with a
WHERE clause can give you undesirable results, such as returning the rogue field in a
column associated with every possible result from the rest of the query, as in a CROSS
JOIN.

106

If you're comfortable with how your database handles this type of statement, and you’re
combining two or just a few tables, a simple SELECT statement will meet your needs.

JOIN

JOIN works in the same way as the SELECT statement above—it returns a result set
with columns from different tables. The advantage of using an explicit JOIN over an
implied one is greater control over your result set, and possibly improved performance
when many tables are involved.

There are several types of JOIN—LEFT, RIGHT, and FULL OUTER; INNER; and
CROSS. The type you use is determined by the results you want to see. For example,
using a LEFT OUTER JOIN will return all relevant rows from the first table listed, while
potentially dropping rows from the second table listed if they don’t have information that
correlates in the first table.

This differs from an INNER JOIN or an implied JOIN. An INNER JOIN will only return
rows for which there is data in both tables.

Use the following JOIN statement for the first SELECT query above:
SELECT tablel.columnl, table2.column2 FROM tablel INNER JOIN table2
ON tablel.columnl = table2.columnil;

Subqueries

Subqueries, or subselect statements, are a way to use a result set as a resource in a
guery. These are often used to limit or refine results rather than run multiple queries or
manipulate the data in your application. With a subquery, you can reference tables to
determine inclusion of data or, in some cases, return a column that is the result of a
subselect.

The following example uses two tables. One table actually contains the data I'm
interested in returning, while the other gives a comparison point to determine what data
is actually interesting.

SELECT columnl FROM tablel WHERE EXISTS (SELECT columnl FROM table2
WHERE tablel.columnl = table2.columnl);

One important factor about subqueries is performance. Convenience comes at a price
and, depending on the size, number, and complexity of tables and the statements you
use, you may want to allow your application to handle processing. Each query is
processed separately in full before being used as a resource for your primary query. If
possible, creative use of JOIN statements may provide the same information with less
lag time.

107

JOIN statements and subqueries

For a more detailed explanation of JOINS and concepts that can be used with them,
read the articles "Basic and complex SQL joins made easy" and "Master joins with
these concepts." For more information about subqueries, read "Use SQL subselects to
consolidate queries."

UNION

The UNION statement is another way to return information from multiple tables with a
single query. The UNION statement allows you to perform queries against several
tables and return the results in a consolidated set, as in the following example.
SELECT columnl, column2, column3 FROM tablel UNION SELECT columnl,
column2, column3 FROM table2;

This will return a result set with three columns containing data from both queries. By
default, the UNION statement will omit duplicates between the tables unless the UNION
ALL keyword is used. UNION is helpful when the returned columns from the different
tables don’t have columns or data that can be compared and joined, or when it prevents
running multiple queries and appending the results in your application code.

If your column names don’t match when you use the UNION statement, use aliases to
give your results meaningful headers:

SELECT columnl, column2 as Two, column3 as Three FROM tablel UNION SELECT
columnl, column4 as Two, column5 as Three FROM table2;

As with subqueries, UNION statements can create a heavy load on your database
server, but for occasional use they can save a lot of time.

Multiple options

When it comes to database queries, there are usually many ways to approach the same
problem. These are some of the more frequently used methods for consolidating
gueries on multiple tables into a single statement. While some of these options may
affect performance, practice will help you know when it's appropriate to use each type of

query.

108

https://www.techrepublic.com/article.jhtml?id=u00320020702dol01.htm
https://www.techrepublic.com/article.jhtml?id=u00320020710dol01.htm
https://www.techrepublic.com/article.jhtml?id=u00320020710dol01.htm
https://www.techrepublic.com/article.jhtml?id=u00320020703dol01.htm
https://www.techrepublic.com/article.jhtml?id=u00320020703dol01.htm

NoahkwhE

NogkwhE

Build-in functions

The Python built-in functions are defined as the functions whose functionality is pre-
defined in Python. The python interpreter has several functions that are always present
for use. These functions are known as Built-in Functions. There are several built-in
functions in Python which are listed below:

Python abs() Function

The python abs() function is used to return the absolute value of a number. It takes only
one argument, a number whose absolute value is to be returned. The argument can be
an integer and floating-point number. If the argument is a complex number, then, abs()
returns its magnitude.

Python abs() Function Example

integer number

integer = -20

print(‘Absolute value of -40 is:', abs(integer))

floating number

floating = -20.83

print(‘Absolute value of -40.83 is:', abs(floating))
Output:

Absolute value of -20 is: 20
Absolute value of -20.83 is: 20.83

Python all() Function

The python all() function accepts an iterable object (such as list, dictionary, etc.). It
returns true if all items in passed iterable are true. Otherwise, it returns False. If the
iterable object is empty, the all() function returns True.

Python all() Function Example
all values true

k=11, 3, 4, 6]

print(all(k))

all values false

k =[O0, False]
print(all(k))

109

8.

9. # one false value
10.k=11, 3,7, 0]
11.print(all(k))

12.

13.# one true value
14.k = [0, False, 5]
15. print(all(k))

16.

17.# empty iterable
18.k =]

19. print(all(k))

Output:
True
False
False

False
True

Python bin() Function

The python bin() function is used to return the binary representation of a specified
integer. A result always starts with the prefix Ob.

Python bin() Function Example

=

x= 10
y = bin(x)
3. print (y)

no

Output:

Ob1010

Python bool()

The python bool() converts a value to boolean(True or False) using the standard truth
testing procedure.

Python bool() Example

110

testl =]
print(testl,'is',bool(testl))
testl = [0O]
print(testl,'is',bool(testl))
testl = 0.0
print(testl,'is',bool(testl))
testl = None
print(testl,'is',bool(testl))
. testl = True
10.print(testl,'is',bool(testl))
11.testl = 'Easy string’
12.print(testl,'is',bool(testl))

©CoNoOk~wWNE

Output:

[] is False

[0] is True

0.0 is False

None is False
True is True

Easy string is True

Python bytes()

The python bytes() in Python is used for returning a bytes object. It is an immutable
version of the bytearray() function.

It can create empty bytes object of the specified size.

Python bytes() Example

=

string = "Hello World."
array = bytes(string, 'utf-8")
3. print(array)

N

Output:

b ' Hello World.'

Python callable() Function

111

A python callable() function in Python is something that can be called. This built-in
function checks and returns true if the object passed appears to be callable, otherwise
false.

Python callable() Function Example

=

X=8
2. print(callable(x))

Output:

False

Python compile() Function

The python compile() function takes source code as input and returns a code object
which can later be executed by exec() function.

Python compile() Function Example

compile string source to code

code_str = 'x=5\ny=10\nprint("sum =" ,x+y)'
code = compile(code_str, 'sum.py’, ‘exec')
print(type(code))

exec(code)

exec(x)

ok whNE

Output:

<class 'code'>
sum =15

Python exec() Function
The python exec() function is used for the dynamic execution of Python program which
can either be a string or object code and it accepts large blocks of code, unlike the
eval() function which only accepts a single expression.
Python exec() Function Example

1. x=8

2. exec('print(x==8)")
3. exec('print(x+4)")

112

Output:

True
12

Python sum() Function

As the name says, python sum() function is used to get the sum of numbers of an
iterable, i.e., list.

Python sum() Function Example

s=sum([1, 2,4])
print(s)

s =sum([1, 2, 4], 10)
print(s)

abkwbdpE

Output:

7
17

Python any() Function

The python any() function returns true if any item in an iterable is true. Otherwise, it
returns False.

Python any() Function Example

=14, 3, 2, 0]
print(any(l))

| = [0, False]
print(any(l))

| = [0, False, 5]
print(any(l))

©ONo GO~ wWNPE

10.1=1]
11.print(any(l))

Output:

113

NookwhPE

abkrwbhPE

True
False
True
False

Python ascii() Function

The python ascii() function returns a string containing a printable representation of an
object and escapes the non-ASCII characters in the string using \x, \u or \U escapes.

Python ascii() Function Example

normalText = 'Python is interesting'
print(ascii(normalText))

otherText = 'Python is interesting'
print(ascii(otherText))

print('Pyth\xfén is interesting’)
Output:
'Python is interesting'

'Pyth\xf6n is interesting'
Python is interesting

Python bytearray()

The python bytearray() returns a bytearray object and can convert objects into
bytearray objects, or create an empty bytearray object of the specified size.

Python bytearray() Example

string = "Python is a programming language.”
string with encoding 'utf-8'

arr = bytearray(string, 'utf-8")

print(arr)

Output:

bytearray(b'Python is a programming language.’)

114

Python eval() Function

The python eval() function parses the expression passed to it and runs python
expression(code) within the program.

Python eval() Function Example

=

X=8
2. print(eval('x + 1)

Output:

9

Python float()
The python float() function returns a floating-point number from a number or string.
Python float() Example

. # for integers
. print(float(9))

1

2

3.

4. # for floats

5. print(float(8.19))
6

7

8

. # for string floats

. print(float("-24.27"))
9.
10.# for string floats with whitespaces
11.print(float(" -17.19\n"))
12.
13.# string float error
14.print(float("xyz"))

Output:

9.0

8.19

-24.27

-17.19

ValueError: could not convert string to float: 'xyz'

115

Python format() Function

The python format() function returns a formatted representation of the given value.
Python format() Function Example

#d, fand b are a type

integer
print(format(123, "d"))

float arguments
print(format(123.4567898, "f*))

. # binary format
0.print(format(12, "b"))

HOO~NoOG~WNE

Output:
123

123.456790
1100

Python frozenset()

The python frozenset() function returns an immutable frozenset object initialized with
elements from the given iterable.

Python frozenset() Example

tuple of letters
|etters - (Iml, Irl’ lol, Itl’ ISI)

fSet = frozenset(letters)
print('Frozen set is:', fSet)
print(Empty frozen set is:', frozenset())

ok whE

Output:

Frozen set is: frozenset({'o’, 'm’, 's', 'r', 't'})
Empty frozen set is: frozenset()

Python getattr() Function

116

NoobkwhE

HowonE

The python getattr() function returns the value of a named attribute of an object. If it is
not found, it returns the default value.

Python getattr() Function Example
class Details:

age = 22

name = "Phill"
details = Details()
print('The age is:', getattr(details, "age"))
print('The age is:', details.age)

Output:

The age is: 22
The age is: 22

Python globals() Function
The python globals() function returns the dictionary of the current global symbol table.

A Symbol table is defined as a data structure which contains all the necessary
information about the program. It includes variable names, methods, classes, etc.

Python globals() Function Example
age =22

globals()['age'] = 22
print('The age is:', age)

Output:

The age is: 22

Python hasattr() Function

The python any() function returns true if any item in an iterable is true, otherwise it
returns False.

Python hasattr() Function Example

117

=14, 3, 2, 0]
print(any(l))

| = [0, False]
print(any(l))

| = [0, False, 5]
print(any(l))

©CoNoOk~wWNE

10.1=1]
11.print(any(l))

Output:
True
False

True
False

Python iter() Function

The python iter() function is used to return an iterator object. It creates an object which
can be iterated one element at a time.

Python iter() Function Example

list of numbers
list =[1,2,3,4,5]

listlter = iter(list)

prints '1'
print(next(listlter))

©oOoNoOkwWNPE

. # prints '2'

10. print(next(listlter))
11.

12.# prints '3’

13. print(next(listiter))
14,

15.# prints '4'

16. print(next(listlter))
17.

18.# prints '5'

118

19. print(next(listlter))

Output:

apbrwnN -

Python len() Function
The python len() function is used to return the length (the number of items) of an object.

Python len() Function Example

=

strA = 'Python'’
2. print(len(strA))

Output:

6

Python list()
The python list() creates a list in python.
Python list() Example

empty list
print(list())

string
String = 'abcde’
print(list(String))

tuple

. Tuple =(1,2,3,4,5)
10. print(list(Tuple))
11.# list

12.List =[1,2,3,4,5]
13. print(list(List))

©oOo~NoOkWNPE

Output:

119

ok whE

©oOoNoOkwWNPE

[

[Ial, Ibll ICI' Idl’ Iel]
[1,2,3,4,5]
[1,2,3,4,5]

Python locals() Function

The python locals() method updates and returns the dictionary of the current local
symbol table.

A Symbol table is defined as a data structure which contains all the necessary
information about the program. It includes variable names, methods, classes, etc.

Python locals() Function Example

def localsAbsent():
return locals()

def localsPresent():
present = True
return locals()

print(‘localsNotPresent:’, localsAbsent())
print(‘localsPresent:’, localsPresent())

Output:

localsAbsent: {}
localsPresent: {'present’: True}

Python map() Function

The python map() function is used to return a list of results after applying a given
function to each item of an iterable(list, tuple etc.).

Python map() Function Example

def calculateAddition(n):
return n+n

numbers = (1, 2, 3, 4)

result = map(calculateAddition, numbers)
print(result)

120

7.

8. # converting map object to set

9. numbersAddition = set(result)

10. print(numbersAddition)
Output:

<map object at 0x7fb04a6becl18>
{8, 2, 4, 6}

Python memoryview() Function

The python memoryview() function returns a memoryview object of the given
argument.

Python memoryview () Function Example

#A random bytearray
randomByteArray = bytearray('ABC', 'utf-8')

mv = memoryview(randomByteArray)

access the memory view's zeroth index
print(mv[0])

©Oo~NoOO~WNE

. # It create byte from memory view
10. print(bytes(mv[0:2]))

11.

12.# It create list from memory view
13. print(list(mv[0:3]))

Output:

65

b'AB'

[65, 66, 67]
Python object()

The python object() returns an empty object. It is a base for all the classes and holds
the built-in properties and methods which are default for all the classes.

Python object() Example

121

NS

el N =

ok whE

python = object()

print(type(python))
print(dir(python))

Output:

<class 'object’>

[class_',' delattr ', dir_'' doc_'' eq ' ' format_' ' ge '
' _getattribute__ ;" gt '\ hash_ ' init_""' le ' It " ne_

' _new__',' reduce_',' reduce_ex_ ' repr_' ' setattr ' ' sizeof ',
' _str_',' subclasshook ']

Python open() Function
The python open() function opens the file and returns a corresponding file object.
Python open() Function Example

opens python.text file of the current directory
f = open("python.txt")

specifying full path

f = open("C:/Python33/README.txt")

Output:

Since the mode is omitted, the file is opened in 'r' mode; opens for reading.

Python chr() Function

Python chr() function is used to get a string representing a character which points to a
Unicode code integer. For example, chr(97) returns the string 'a’. This function takes an
integer argument and throws an error if it exceeds the specified range. The standard
range of the argument is from O to 1,114,111.

Python chr() Function Example

Calling function

result = chr(102) # It returns string representation of a char
result2 = chr(112)

Displaying result

print(result)

print(result2)

122

~

NoohkwhE

NogkwhPE

Verify, is it string type?
print("is it string type:", type(result) is str)

Output:

ValueError: chr() arg not in range(0x110000)

Python complex()

Python complex() function is used to convert numbers or string into a complex number.
This method takes two optional parameters and returns a complex number. The first
parameter is called a real and second as imaginary parts.

Python complex() Example

Python complex() function example

Calling function

a = complex(1) # Passing single parameter
b = complex(1,2) # Passing both parameters
Displaying result

print(a)

print(b)

Output:

(1.5+0j)
(1.5+2.2j)

Python delattr() Function

Python delattr() function is used to delete an attribute from a class. It takes two
parameters, first is an object of the class and second is an attribute which we want to
delete. After deleting the attribute, it no longer available in the class and throws an error
if try to call it using the class object.

Python delattr() Function Example

class Student:
id =101
name = "Pranshu”
email = "pranshu@abc.com”
Declaring function
def getinfo(self):
print(self.id, self.name, self.email)

123

8.
9.

s = Student()
s.getinfo()

10. delattr(Student,'course’) # Removing attribute which is not available
11.s.getinfo() # error: throws an error

HwhE

abkrwbhPE

Output:

101 Pranshu pranshu@abc.com
AttributeError: course

Python dir() Function

Python dir() function returns the list of names in the current local scope. If the object on
which method is called has a method named __dir__ (), this method will be called and
must return the list of attributes. It takes a single object type argument.

Python dir() Function Example

Calling function
att = dir()

Displaying result
print(att)

Output:

[_annotations_ ',' builtins__ ',' cached '' doc_ ' ' file_ ' ' loader_ ',
' _name__',' package ',' spec_ ']

Python divmod() Function

Python divmod() function is used to get remainder and quotient of two numbers. This
function takes two numeric arguments and returns a tuple. Both arguments are required
and numeric

Python divmod() Function Example
Python divmod() function example
Calling function

result = divmod(10,2)

Displaying result

print(result)

Output:

124

abkowbhpE

ok whE

(5,0)

Python enumerate() Function

Python enumerate() function returns an enumerated object. It takes two parameters,
first is a sequence of elements and the second is the start index of the sequence. We
can get the elements in sequence either through a loop or next() method.

Python enumerate() Function Example

Calling function

result = enumerate([1,2,3])
Displaying result
print(result)
print(list(result))

Output:

<enumerate object at 0x7{f641093d80>
[(0, 1), (1, 2), (2, 3)]

Python dict()

Python dict() function is a constructor which creates a dictionary. Python dictionary
provides three different constructors to create a dictionary:

o If no argument is passed, it creates an empty dictionary.

o If a positional argument is given, a dictionary is created with the same key-value
pairs. Otherwise, pass an iterable object.

o If keyword arguments are given, the keyword arguments and their values are
added to the dictionary created from the positional argument.

Python dict() Example

Calling function

result = dict() # returns an empty dictionary
result2 = dict(a=1,b=2)

Displaying result

print(result)

print(result2)

Output:

125

abkrwbhPE

©ONOo Gk WNE

{}
{a 1,'b" 2}

Python filter() Function

Python filter() function is used to get filtered elements. This function takes two
arguments, first is a function and the second is iterable. The filter function returns a
sequence of those elements of iterable object for which function returns true value.

The first argument can be none, if the function is not available and returns only
elements that are true.

Python filter() Function Example

Python filter() function example
def filterdata(x):

if x>5:

return x

Calling function
result = filter(filterdata,(1,2,6))
Displaying result
print(list(result))

Output:

[6]

Python hash() Function

Python hash() function is used to get the hash value of an object. Python calculates the
hash value by using the hash algorithm. The hash values are integers and used to
compare dictionary keys during a dictionary lookup. We can hash only the types which
are given below:

Hashable types: * bool * int * long * float * string * Unicode * tuple * code object.
Python hash() Function Example

Calling function

result = hash(21) # integer value

result2 = hash(22.2) # decimal value

Displaying result
print(result)

126

NS

ok whE

print(result2)
Output:

21
461168601842737174

Python help() Function

Python help() function is used to get help related to the object passed during the call. It

takes an optional parameter and returns help information. If no argument is given, it
shows the Python help console. It internally calls python's help function.

Python help() Function Example
Calling function

info = help() # No argument

Displaying result

print(info)

Output:

Welcome to Python 3.5's help utility!

Python min() Function

Python min() function is used to get the smallest element from the collection. This
function takes two arguments, first is a collection of elements and second is key, and
returns the smallest element from the collection.

Python min() Function Example

Calling function

small = min(2225,325,2025) # returns smallest element
small2 = min(1000.25,2025.35,5625.36,10052.50)

Displaying result

print(small)

print(small2)

Output:

325
1000.25

127

ONo O~ WNE

NogkrwhE

Python set() Function

In python, a set is a built-in class, and this function is a constructor of this class. It is
used to create a new set using elements passed during the call. It takes an iterable
object as an argument and returns a new set object.

Python set() Function Example

Calling function

result = set() # empty set
result2 = set('12")

result3 = set(javatpoint’)
Displaying result
print(result)
print(result2)
print(result3)

Output:

set()
{1,2)
{'all .nll IVII 'tll 'jli 'pll 'ill 'o.}

Python hex() Function

Python hex() function is used to generate hex value of an integer argument. It takes an
integer argument and returns an integer converted into a hexadecimal string. In case,
we want to get a hexadecimal value of a float, then use float.hex() function.

Python hex() Function Example

Calling function
result = hex(1)

integer value
result2 = hex(342)
Displaying result
print(result)
print(result2)

Output:

Ox1

128

N~ wWNE

NogkwhE

0x156

Python id() Function

Python id() function returns the identity of an object. This is an integer which is
guaranteed to be unique. This function takes an argument as an object and returns a
unique integer number which represents identit