
1 
 

DATA BASE 

MANAGEMENT SYSTEM 
 

BCA 202 

SELF LEARNING MATERIAL 

 

 

 

 

 

 

 

 

DIRECTORATE 

OF DISTANCE EDUCATION 

 

SWAMI VIVEKANAND SUBHARTI UNIVERSITY 

MEERUT – 250 005, 

UTTAR PRADESH (INDIA) 



2 
 

SLM Module Developed By : 

Author: 

Reviewed by : 

 

Assessed by: 

Study Material Assessment Committee, as per the SVSU ordinance No. VI (2) 

 

Copyright © Gayatri Sales 

 

DISCLAIMER 

 

No part of this publication which is material protected by this copyright notice may be reproduced 

or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, 

electronic, digital or mechanical, including photocopying, scanning, recording or by any information 

storage or retrieval system, without prior permission from the publisher. 

 

 

 

Information contained in this book has been published by Directorate of Distance Education and has 

been obtained by its authors from sources be lived to be reliable and are correct to the best of their 

knowledge. However, the publisher and its author shall in no event be liable for any errors, 

omissions or damages arising out of use of this information and specially disclaim and implied 

warranties or merchantability or fitness for any particular use. 

 

 

 

Published by: Gayatri Sales 

Typeset at: Micron Computers Printed at: Gayatri Sales, Meerut. 

 

 



3 
 

DATA BASE MANAGEMENT SYSTEM  

Unit - I 

Overview of Database Management System 

Elements of Database System, DBMS and its architecture, Advantage of DBMS 

(including Data independence), Types of database users, Role of Database 

administrator. 

Unit - II 

Data Models 

Brief overview of Hierarchical and Network Model, Detailed study of Relational Model 

(Relations, Properties, Key & Integrity rules), Comparison of Hierarchical, Network and 

Relational Model ,CODD‘s rules for Relational Model,E-R diagram. 

Unit - III 

Normalization 

Normalization concepts and update anomalies ,Functional dependencies,Multivalued 

and join dependencies. 

Normal Forms: (1 NF, 2 NF, 3NF, BCNF, 4NF, and 5NF) 

Unit - IV 

SQL 

SQL Constructs, SQL Join: Multiple Table Queries, Build-in functions, Views and their 

use, Overviews of ORACLE: (Data definition and manipulation) 

Unit - V 

Database Security, Integrity and Control 

Security and Integrity threats, Defense mechanism, Integrity, Auditing and Control, 

Recent trends in DBMS- Distributed and Deductive Database. 

 

 

 



4 
 

UNIT - I 

 

 

Overview of Database Management System 

Elements of Database System 

Organizations produce and gather data as they operate. Contained in a database, data 
is typically organized to model relevant aspects of reality in a way that supports 
processes requiring this information. Knowing how this can be managed effectively is 
vital to any organization. 

What is a Database Management System (or DBMS)? 

Organizations employ Database Management Systems (or DBMS) to help them 
effectively manage their data and derive relevant information out of it. A DBMS is a 
technology tool that directly supports data management. It is a package designed to 
define, manipulate, and manage data in a database. 
 
Some general functions of a DBMS: 
 

 Designed to allow the definition, creation, querying, update, and administration of 
databases 

 Define rules to validate the data and relieve users of framing programs for data 
maintenance 

 Convert an existing database, or archive a large and growing one 

 Run business applications, which perform the tasks of managing business processes, 
interacting with end-users and other applications, to capture and analyze data 

Some well-known DBMSs are Microsoft SQL Server, Microsoft Access, Oracle, SAP, 
and others. 

Components of DBMS 

DBMS have several components, each performing very significant tasks in the database 
management system environment. Below is a list of components within the database 
and its environment. 

 
Software 
This is the set of programs used to control and manage the overall database. This 
includes the DBMS software itself, the Operating System, the network software being 
used to share the data among users, and the application programs used to access data 
in the DBMS. 
 



5 
 

Hardware 
Consists of a set of physical electronic devices such as computers, I/O devices, storage 
devices, etc., this provides the interface between computers and the real world systems. 
 
Data 
DBMS exists to collect, store, process and access data, the most important component. 
The database contains both the actual or operational data and the metadata. 
 
Procedures 
These are the instructions and rules that assist on how to use the DBMS, and in 
designing and running the database, using documented procedures, to guide the users 
that operate and manage it. 
 
Database Access Language 
This is used to access the data to and from the database, to enter new data, update 
existing data, or retrieve required data from databases. The user writes a set of 
appropriate commands in a database access language, submits these to the DBMS, 
which then processes the data and generates and displays a set of results into a user 
readable form. 
 
Query Processor 
This transforms the user queries into a series of low level instructions. This reads the 
online user‘s query and translates it into an efficient series of operations in a form 
capable of being sent to the run time data manager for execution. 
 
Run Time Database Manager 
Sometimes referred to as the database control system, this is the central software 
component of the DBMS that interfaces with user-submitted application programs and 
queries, and handles database access at run time. Its function is to convert operations 
in user‘s queries. It provides control to maintain the consistency, integrity and security of 
the data. 
 
Data Manager 
Also called the cache manger, this is responsible for handling of data in the database, 
providing a recovery to the system that allows it to recover the data after a failure. 
 
Database Engine 
The core service for storing, processing, and securing data, this provides controlled 
access and rapid transaction processing to address the requirements of the most 
demanding data consuming applications. It is often used to create relational databases 
for online transaction processing or online analytical processing data. 
 
Data Dictionary 
This is a reserved space within a database used to store information about the 
database itself. A data dictionary is a set of read-only table and views, containing the 



6 
 

different information about the data used in the enterprise to ensure that database 
representation of the data follow one standard as defined in the dictionary. 
 
Report Writer 
Also referred to as the report generator, it is a program that extracts information from 
one or more files and presents the information in a specified format. Most report writers 
allow the user to select records that meet certain conditions and to display selected 
fields in rows and columns, or also format the data into different charts. 

Great Performance through Effective DBMS 

A company‘s performance is greatly affected by how it manages its data. And one of the 
most basic tasks of data management is the effective management of its database. 
Understanding the different components of the DBMS and how it works and relates to 
each other is the first step to employing an effective DBMS. 
 

DBMS and its architecture 

The design of a DBMS depends on its architecture. It can be centralized or 
decentralized or hierarchical. The architecture of a DBMS can be seen as either single 
tier or multi-tier. An n-tier architecture divides the whole system into related but 
independent n modules, which can be independently modified, altered, changed, or 
replaced. 

In 1-tier architecture, the DBMS is the only entity where the user directly sits on the 
DBMS and uses it. Any changes done here will directly be done on the DBMS itself. It 
does not provide handy tools for end-users. Database designers and programmers 
normally prefer to use single-tier architecture. 

If the architecture of DBMS is 2-tier, then it must have an application through which the 
DBMS can be accessed. Programmers use 2-tier architecture where they access the 
DBMS by means of an application. Here the application tier is entirely independent of 
the database in terms of operation, design, and programming. 

Architecture 

Database architecture uses programming languages to design a particular type of 

software for businesses or organizations.Database architecture focuses on the design, 

development, implementation and maintenance of computer programs that store and 

organize information for businesses, agencies and institutions. A database architect 

develops and implements software to meet the needs of users. 

The design of a DBMS depends on its architecture. It can be centralized or decentralized 

or hierarchical. The architecture of a DBMS can be seen as either single tier or multi-tier. 

The tiers are classified as follows : 



7 
 

1. 1-tier architecture 

2. 2-tier architecture 

3. 3-tier architecture 

4. n-tier architecture 

1-tier architecture: 

One-tier architecture involves putting all of the required components for a software 

application or technology on a single server or platform. 

 

 

1-tier architecture 

Basically, a one-tier architecture keeps all of the elements of an application, including the 

interface, Middleware and back-end data, in one place. Developers see these types of 

systems as the simplest and most direct way. 



8 
 

2-tier architecture: 

The two-tier is based on Client Server architecture. The two-tier architecture is like client 

server application. The direct communication takes place between client and server. 

There is no intermediate between client and server. 

 

 

2-tier architecture 

3-tier architecture: 

A 3-tier architecture separates its tiers from each other based on the complexity of the 

users and how they use the data present in the database. It is the most widely used 

architecture to design a DBMS. 



9 
 

 

This architecture has different usages with different applications. It can be used in web 

applications and distributed applications. The strength in particular is when using this 

architecture over distributed systems. 

 Database (Data) Tier −  

 

At this tier, the database resides along with its query processing languages. We also 

have the relations that define the data and their constraints at this level. 

 Application (Middle) Tier − 

 

At this tier reside the application server and the programs that access the database. 

For a user, this application tier presents an abstracted view of the database. End-

users are unaware of any existence of the database beyond the application. At the 

other end, the database tier is not aware of any other user beyond the application 



10 
 

tier. Hence, the application layer sits in the middle and acts as a mediator between 

the end-user and the database. 

 User (Presentation) Tier −  

 

End-users operate on this tier and they know nothing about any existence of the 

database beyond this layer. At this layer, multiple views of the database can be 

provided by the application. All views are generated by applications that reside in the 

application tier. 

n-tier architecture: 

N-tier architecture would involve dividing an application into three different tiers. These 

would be the 

1. logic tier, 

2. the presentation tier, and 

3. the data tier. 

 

It is the physical separation of the different parts of the application as opposed to the 

usually conceptual or logical separation of the elements in the model-view-controller 

(MVC) framework. Another difference from the MVC framework is that n-tier layers are 

connected linearly, meaning all communication must go through the middle layer, which 

is the logic tier. In MVC, there is no actual middle layer because the interaction is 

triangular; the control layer has access to both the view and model layers and the model 

also accesses the view; the controller also creates a model based on the requirements 

and pushes this to the view. However, they are not mutually exclusive, as the MVC 

framework can be used in conjunction with the n-tier architecture, with the n-tier being 

the overall architecture used and MVC used as the framework for the presentation tier. 

Normalization of Database: 

Database Normalisation is a technique of organizing the data in the database. 

Normalization is a systematic approach of decomposing tables to eliminate data 

redundancy and undesirable characteristics like Insertion, Update and Deletion 

Anamolies. It is a multi-step process that puts data into tabular form by removing 

duplicated data from the relation tables. 

https://msdn.microsoft.com/en-us/library/bb384398.aspx


11 
 

Normalization is used for mainly two purpose, 

 Eliminating reduntant(useless) data. 

 Ensuring data dependencies make sense i.e data is logically stored. 

Problem Without Normalization: 

Without Normalization, it becomes difficult to handle and update the database, without 

facing data loss. Insertion, Updation and Deletion Anamolies are very frequent if 

Database is not Normalized. 

Normalization Rule: 

Normalization rule are divided into following normal form. 

1. First Normal Form 

2. Second Normal Form 

3. Third Normal Form 

4. BCNF 

First Normal Form: 

A database is in first normal form if it satisfies the following conditions: 

 Contains only atomic values 

 There are no repeating groups 

An atomic value is a value that cannot be divided. For example, in the table shown 

below, the values in the [Color] column in the first row can be divided into ―red‖ and 

―green‖, hence [TABLE_PRODUCT] is not in 1NF. 



12 
 

A repeating group means that a table contains two or more columns that are closely 

related. For example, a table that records data on a book and its author(s) with the 

following columns: [Book ID], [Author 1], [Author 2], [Author 3] is not in 1NF because 

[Author 1], [Author 2], and [Author 3] are all repeating the same attribute. 

1st Normal Form Example 

How do we bring an unnormalized table into first normal form? Consider the following 

example: 

 

This table is not in first normal form because the [Color] column can contain multiple 

values. For example, the first row includes values ―red‖ and ―green.‖ 

To bring this table to first normal form, we split the table into two tables and now we have 

the resulting tables: 

 



13 
 

Now first normal form is satisfied, as the columns on each table all hold just one value. 

Second Normal Form: 

A database is in second normal form if it satisfies the following conditions: 

 It is in first normal form 

 All non-key attributes are fully functional dependent on the primary key 

In a table, if attribute B is functionally dependent on A, but is not functionally dependent 

on a proper subset of A, then B is considered fully functional dependent on A. Hence, in 

a 2NF table, all non-key attributes cannot be dependent on a subset of the primary key. 

Note that if the primary key is not a composite key, all non-key attributes are always fully 

functional dependent on the primary key. A table that is in 1st normal form and contains 

only a single key as the primary key is automatically in 2nd normal form. 

2nd Normal Form Example 

Consider the following example: 

 

 

This table has a composite primary key [Customer ID, Store ID]. The non-key attribute is 

[Purchase Location]. In this case, [Purchase Location] only depends on [Store ID], which 

is only part of the primary key. Therefore, this table does not satisfy second normal form. 



14 
 

To bring this table to second normal form, we break the table into two tables, and now 

we have the following: 

 

What we have done is to remove the partial functional dependency that we initially had. 

Now, in the table [TABLE_STORE], the column [Purchase Location] is fully dependent 

on the primary key of that table, which is [Store ID]. 

Third Normal Form: 

A relation is in third normal form if it is in 2NF and no non key attribute is transitively 

dependent on the primary key. 

A bank uses the following relation: 

Vendor(ID, Name, Account_No, Bank_Code_No, Bank) 

The attribute ID is the identification key. All attributes are single valued (1NF). The table 

is also in 2NF. 

The following dependencies exist: 



15 
 

1. Name, Account_No, Bank_Code_No are functionally dependent on ID (ID → Name, 

Account_No, Bank_Code_No) 

2. Bank is functionally dependent on Bank_Code_No (Bank_Code_No → Bank) 

 

The table in this example is in 1NF and in 2NF. But there is a transitive dependency 

between Bank_Code_No and Bank, because Bank_Code_No is not the primary key of 

this relation. To get to the third normal form (3NF), we have to put the bank name in a 

separate table together with the clearing number to identify it. 

BCNF: 

BCNF was developed by Raymond Boyce and E.F. Codd; the latter is widely considered 

the father of relational database design. 

BCNF is really an extension of 3rd Normal Form (3NF). For this reason it is frequently 

termed 3.5NF. 3NF states that all data in a table must depend only on that table‘s 

primary key, and not on any other field in the table. At first glance it would seem that 

BCNF and 3NF are the same thing. However, in some rare cases it does happen that a 

3NF table is not BCNF-compliant. This may happen in tables with two or more 

overlapping composite candidate keys. 

 

Advantage of DBMS (including Data independence) 

The database management system has a number of advantages as compared to 
traditional computer file-based processing approach. The DBA must keep in mind these 
benefits or capabilities during databases and monitoring the DBMS. 
The Main advantages of DBMS are described below. 

Centralized Data Management: Large commercial databases may exist in two different 
Topologies. 

1.      Centralized  A centralized database (sometimes abbreviated CDB) is a 
database that is located, stored, and maintained in a single location. This location 
is most often a central computer or database system, for example a desktop or 
server, or a mainframe computer. Users typically use an Internet connection and 
network of computers to access a CDB. In most cases, a centralized database 
would be used by an organization (e.g. a business company) or an institution 
(e.g. a university). Banks, airlines, railways etc., tend to use centralized 
databases. 

2.      Distributed  Where the database is in many locations often where you have a 
national or international company and customers tend to regularly interact with a 



16 
 

local branch. For example: Google uses a distributed DBMS to cater to users in 
different geographic regions to dispense country/region specific information. 

In both cases the database looks like one database the end-user cannot feel the 
difference. Information stored in Centralized databases is accessible from a large 
number of different points, which in turn creates a significant amount of advantages as 
against other types of databases. Some of the important advantages are listed below: 

1.   Data integrity is maximized and data redundancy is minimized, as the single 
storing place of all the data also implies that a given set of data only has one 
primary record. This helps in maintaining data accurately and consistently, hence 
enhancing data reliability. 

2.      Generally bigger data security, as the single data storage location implies that 
there is only one possible place where the database can be attacked and sets of 
data can be stolen or tampered with. 

3.      Better data preservation than the distributed type since data backup and 
maintenance becomes easier and less time consuming. 

4.      Ease of use by the end-user due to the simplicity of a single database design. 

5.      Generally easier data portability and database administration. 

6.      More cost effective than other types of database systems as labor, power 
supply and maintenance costs are all minimized. 

7.      Data kept in the same location is easier to be edited, updated, re-organized, 
mirrored, or analyzed. 

8.      All the information can be accessed at the same time from the same location. 

9.      Updates to any given set of data are immediately received by every end-user. 

Data Independence: In a database, the management system provides the interface 
between the application programs and the data. Data independence refers to the 
immunity of user applications to changes made in the data structure and organization or 
storage. Physical data independence means the applications need not worry about how 
the data are physically structured and stored. Applications should work with a logical 
data model and declarative query language. 

If major changes were to be made to the data, the application programs may need to be 
rewritten. When changes are made to the data representation, the data maintained by 
the DBMS is changed but the DBMS continues to provide data to application programs 
in the previously used ways. 

Data independence is the immunity of application programs to changes in storage 
structures and access techniques. For example if we add a new attribute, change index 
structure then in traditional file processing system, the applications are affected. But in a 
DBMS environment these changes are reflected in the catalog. As a result the 
applications are not affected. Data independence can be physical data independence or 
logical data independence. 



17 
 

�       Physical data independence is the ability to modify physical schema without 
causing the conceptual schema or application programs to be rewritten. In effect, 
it means that different kinds of user applications are able to interact with the data 
irrespective of the structure of the data in the database. 

�       Logical data independence is the ability to modify the conceptual schema 
without having to change the external schemas or application programs. Logical 
Data independence means if we add some new columns or remove some 
columns from table then the user view and programs will not change. 

Data independence and operation independence together define Data Abstraction. 

Data Inconsistency: Data inconsistency means different copies of the same data will 
have different values. For example, consider a person working in a branch of an 
organization. 

The details of the person will be stored both in the branch office as well as in the main 
office. If that particular person changes his address, then the change of address has to 
be maintained in the main as well as the branch office.  For example the change of 
address is maintained in the branch office but not in the main office, then the data about 
that person is inconsistent. 

DBMS is designed to have data consistency. Some of the qualities achieved in DBMS 
are: 

1. Data redundancy → Reduced in DBMS. 

2. Data independence → Activated in DBMS. 

3. Data inconsistency → Avoided in DBMS. 

4. Centralizing the data → Achieved in DBMS. 

5. Data integrity → Necessary for efficient Transaction. 

6. Support for multiple views → Necessary for security reasons. 

Explanation of Terms: 

�   Data redundancy means duplication of data. Data redundancy will occupy 
more space hence it is not desirable. 

�   Data independence means independence between application program and 
the data. The advantage is that when the data representation changes, it is not 
necessary to change the application program. 

�   Data inconsistency means different copies of the same data will have different 
values. 

�   Centralizing the data means data can be easily shared between the users but 
the main concern is data security. 

�   The main threat to data integrity comes from several different users attempting 
to update the same data at the same time. For example, The number of bookings 
made is larger than the capacity of the aircraft/train. 



18 
 

�   Support for multiple views means DBMS allows different users to see different 
views of the database, according to the perspective each one requires. This 
concept is used to enhance the security of the database. 

  

Other Advantages of DBMS 

Controlling Data Redundancy 
In non-database systems each application program has its own private files. In this 
case, the duplicated copies of the same data is created in many places. In DBMS, all 
data of an organization is integrated into a single database file. The data is recorded in 
only one place in the database and it is not duplicated. 

Data Sharing 
 
In DBMS, data can be shared by authorized users of the organization. The database 
administrator manages the data and gives rights to users to access the data. Many 
users can be authorized to access the same piece of information simultaneously. The 
remote users can also share same data. Similarly, the data of same database can be 
shared between different application programs. 

Data Consistency 
 
By controlling the data redundancy, the data consistency is obtained. If a data item 
appears only once, any update to its value has to be performed only once and the 
updated value is immediately available to all users. If the DBMS has controlled 
redundancy, the database system enforces consistency. 

Data Integration 
 
In Database management system, data in database is stored in tables. A single 
database contains multiple tables and relationships can be created between tables (or 
associated data entities). This makes easy to retrieve and update data. 

Integration Constraints 

Integrity constraints or consistency rules can be applied to database so that the correct 
data can be entered into database. The constraints may be applied to data item within a 
single record or they may be applied to relationships between records. 

Data Security 
 
Form is very important object of DBMS. You can create forms very easily and quickly in 
DBMS. Once a form is created, it can be used many times and it can be modified very 
easily. The created forms are also saved along with database and behave like a 
software component. A form provides very easy way (user-friendly) to enter data into 
database, edit data and display data from database. The non-technical users can also 
perform various operations on database through forms without going into technical 
details of a fatabase. 

Report Writing 



19 
 

 
Most of the DBMSs provide the report writer tools used to create reports. The users can 
create very easily and quickly. Once a report is created, it can be used may times and it 
can be modified very easily. The created reports are also saved along with database 
and behave like a software component. 

Control over Concurrency 
 
In a computer file-based system, if two users are allowed to access data 
simultaneously, it is possible that they will interfere with each other. For example, if both 
users attempt to perform update operation on the same record, then one may overwrite 
the values recorded by the other. Most database management systems have sub-
systems to control the concurrency so that transactions are always recorded with 
accuracy. 

Backup and Recovery Procedures 
 
In a computer file-based system, the user creates the backup of data regularly to protect 
the valuable data from damage due to failures to the computer system or application 
program. It is very time consuming method, if amount of data is large. Most of the 
DBMSs provide the 'backup and recovery' sub-systems that automatically create the 
backup of data and restore data if required. 

Data Independence is defined as a property of DBMS that helps you to change the 
Database schema at one level of a database system without requiring to change the 
schema at the next higher level. Data independence helps you to keep data separated 
from all programs that make use of it. 

You can use this stored data for computing and presentation. In many systems, data 
independence is an essential function for components of the system. 

In this tutorial, you will learn: 

 What is Data Independence of DBMS? 
 

 Types of Data Independence 
 

 Levels of Database 
 

 Physical Data Independence 
 

 Logical Data Independence 
 

 Difference between Physical and Logical Data Independence 
 

 Importance of Data Independence 

https://www.guru99.com/dbms-data-independence.html#1
https://www.guru99.com/dbms-data-independence.html#2
https://www.guru99.com/dbms-data-independence.html#3
https://www.guru99.com/dbms-data-independence.html#4
https://www.guru99.com/dbms-data-independence.html#5
https://www.guru99.com/dbms-data-independence.html#6
https://www.guru99.com/dbms-data-independence.html#7


20 
 

Types of Data Independence 

In DBMS there are two types of data independence 

1. Physical data independence 
 

2. Logical data independence. 

Levels of Database 

Before we learn Data Independence, a refresher on Database Levels is important. The 
database has 3 levels as shown in the diagram below 

1. Physical/Internal 
 

2. Conceptual 
 

3. External 

 
Consider an Example of a University Database. At the different levels this is how the 
implementation will look like: 

Type of Schema Implementation 

External Schema View 1: Course info(cid:int,cname:string) 

View 2: studeninfo(id:int. name:string) 

Conceptual Shema Students(id: int, name: string, login: string, 

age: integer)  

Courses(id: int, cname.string, credits:integ

er)  

Enrolled(id: int, grade:string) 

Physical Schema  Relations stored as unordered files. 

 Index on the first column of 

Students. 

Physical Data Independence 



21 
 

Physical data independence helps you to separate conceptual levels from the 
internal/physical levels. It allows you to provide a logical description of the database 
without the need to specify physical structures. Compared to Logical Independence, it is 
easy to achieve physical data independence. 

With Physical independence, you can easily change the physical storage structures or 
devices with an effect on the conceptual schema. Any change done would be absorbed 
by the mapping between the conceptual and internal levels. Physical data 
independence is achieved by the presence of the internal level of the database and then 
the transformation from the conceptual level of the database to the internal level. 

Examples of changes under Physical Data Independence 

Due to Physical independence, any of the below change will not affect the conceptual 
layer. 

 Using a new storage device like Hard Drive or Magnetic Tapes 
 

 Modifying the file organization technique in the Database 
 

 Switching to different data structures. 
 

 Changing the access method. 
 

 Modifying indexes. 
 

 Changes to compression techniques or hashing algorithms. 
 

 Change of Location of Database from say C drive to D Drive 

Logical Data Independence 

Logical Data Independence is the ability to change the conceptual scheme without 
changing 

1. External views 
 

2. External API or programs 

Any change made will be absorbed by the mapping between external and conceptual 
levels. 

When compared to Physical Data independence, it is challenging to achieve logical data 
independence. 



22 
 

Examples of changes under Logical Data Independence 

Due to Logical independence, any of the below change will not affect the external layer. 

1. Add/Modify/Delete a new attribute, entity or relationship is possible without a 
rewrite of existing application programs 
 

2. Merging two records into one 
 

3. Breaking an existing record into two or more records 

Difference between Physical and Logical Data Independence 

Logica Data Independence Physical Data Independence 

Logical Data Independence is mainly 

concerned with the structure or changing 

the data definition. 

Mainly concerned with the storage of the 

data. 

It is difficult as the retrieving of data is 

mainly dependent on the logical structure 

of data. 

It is easy to retrieve. 

Compared to Logic Physical 

independence it is difficult to achieve 

logical data independence. 

Compared to Logical Independence it is 

easy to achieve physical data 

independence. 

You need to make changes in the 

Application program if new fields are 

added or deleted from the database. 

A change in the physical level usually 

does not need change at the Application 

program level. 

Modification at the logical levels is 

significant whenever the logical structures 

of the database are changed. 

Modifications made at the internal levels 

may or may not be needed to improve the 

performance of the structure. 

Concerned with conceptual schema Concerned with internal schema 



23 
 

Example: Add/Modify/Delete a new 

attribute 

Example: change in compression 

techniques, hashing algorithms, storage 

devices, etc 

Importance of Data Independence 

 Helps you to improve the quality of the data 
 

 Database system maintenance becomes affordable 
 

 Enforcement of standards and improvement in database security 
 

 You don't need to alter data structure in application programs 
 

 Permit developers to focus on the general structure of the Database rather than 
worrying about the internal implementation 
 

 It allows you to improve state which is undamaged or undivided 
 

 Database incongruity is vastly reduced. 
 

 Easily make modifications in the physical level is needed to improve the 
performance of the system. 

Summary 

 Data Independence is the property of DBMS that helps you to change the 
Database schema at one level of a database system without requiring to change 
the schema at the next higher level. 
 

 Two levels of data independence are 1) Physical and 2) Logical 
 

 Physical data independence helps you to separate conceptual levels from the 
internal/physical levels 
 

 Logical Data Independence is the ability to change the conceptual scheme 
without changing 
 

 When compared to Physical Data independence, it is challenging to achieve 
logical data independence 
 

 Data Independence Helps you to improve the quality of the data 



24 
 

 

 

Types of database users 

This differentiation is made according to the interaction of users to the database. 

Database system is made to store information and provide an environment for retrieving 

information. There are four types of database users in DBMS we are going to discuss in 

this article. 

Different Types of Database Users in DBMS 
 
Application Programmers 

As its name shows, application programmers are the one who writes application 
programs that uses the database. These application programs are written in 
programming languages like COBOL or PL (Programming Language 1), Java and fourth 
generation language. These programs meet the user requirement and made according 
to user requirements. Retrieving information, creating new information and changing 
existing information is done by these application programs. 
 
They interact with DBMS through DML (Data manipulation language) calls. And all 
these functions are performed by generating a request to the DBMS. If application 
programmers are not there then there will be no creativity in the whole team of 
Database. 
 
End Users 

End users are those who access the database from the terminal end. They use the 
developed applications and they don‘t have any knowledge about the design and 
working of database. These are the second class of users and their main motto is just to 
get their task done. There are basically two types of end users that are discussed 
below. 
 
Casual User 
 
These users have great knowledge of query language. Casual users access data by 
entering different queries from the terminal end. They do not write programs but they 
can interact with the system by writing queries. 
 
Naïve 
 
Any user who does not have any knowledge about database can be in this category. 
There task is to just use the developed application and get the desired results. For 
example: Clerical staff in any bank is a naïve user. They don‘t have any dbms 
knowledge but they still use the database and perform their given task. 



25 
 

DBA (Database Administrator) 

 

DBA can be a single person or it can be a group of person. Database Administrator is 
responsible for everything that is related to database. He makes the policies, strategies 
and provides technical supports. 
 
System Analyst 

 

System analyst is responsible for the design, structure and properties of database. All 
the requirements of the end users are handled by system analyst. Feasibility, economic 
and technical aspects of DBMS is the main concern of system analyst. 
 
Role of Database administrator 
 
Role, Duties and Responsibilities of database Administrator( DBA): There are lots 
of role and duties of a database administrator (DBA). He is responsible for managing, 
securing and taking care of the database system. So before we start discussing the role 
and duties of DBA, we should understand who DBA is in actual and what is he meant 
for? 
 
Who Is A DBA (Database Administrator) 

 

A Database Administrator is a person or a group of person who are responsible for 
managing all the activities related to database system. This job requires a high level of 
expertise by a person or group of person. There are very rare chances that only a single 
person can manage all the database system activities so companies always have a 
group of people who take care of database system.  
 
In a nut shell, A DBA is the controller of everything related to database system. Now let 
us discuss what are the main role and duties of Database Administrator (DBA). 
Role, Duties and Responsibilities of database Administrator( DBA) 
Installing and Configuration of database: DBA is responsible for installing the database 
software. He configure the software of database and then upgrades it if needed. There 
are many database software like oracle, Microsoft SQL and MySQL in the industry so 
DBA decides how the installing and configuring of these database software will take 
place. 
 
1. Deciding the hardware device 

 

Depending upon the cost, performance and efficiency of the hardware, it is DBA who 
have the duty of deciding which hardware devise will suit the company requirement. It is 
hardware that is an interface between end users and database so it needed to be of 
best quality. 
 

https://whatisdbms.com/wp-content/uploads/2016/03/Role-Of-DBA.jpg


26 
 

2. Managing Data Integrity 

 

Data integrity should be managed accurately because it protects the data from 
unauthorized use. DBA manages relationship between the data to maintain data 
consistency. 
 
3. Decides Data Recovery and Back up method 

 

If any company is having a big database, then it is likely to happen that database may 
fail at any instance. It is require that a DBA takes backup of entire database in regular 
time span. DBA has to decide that how much data should be backed up and how 
frequently the back should be taken. Also the recovery of data base is done by DBA if 
they have lost the database. 
 
4. Tuning Database Performance 

 

Database performance plays an important role for any business. If user is not able to 
fetch data speedily then it may loss company business. So by tuning an modifying sql 
commands a DBA can improves the performance of database. 
 
5. Capacity Issues 

 

All the databases have their limits of storing data in it and the physical memory also has 
some limitations. DBA has to decide the limit and capacity of database and all the 
issues related to it. 
 
6. Database design 

 

The logical design of the database is designed by the DBA. Also a DBA is responsible 
for physical design, external model design, and integrity control. 
 
7. Database accessibility 

 

DBA writes subschema to decide the accessibility of database. He decides the users of 
the database and also which data is to be used by which user. No user has to power to 
access the entire database without the permission of DBA. 
 
8. Decides validation checks on data 

 

DBA has to decide which data should be used and what kind of data is accurate for the 
company. So he always puts validation checks on data to make it more accurate and 
consistence. 



27 
 

9. Monitoring performance 

 

If database is working properly then it doesn‘t mean that there is no task for the DBA. 
Yes f course, he has to monitor the performance of the database. A DBA monitors the 
CPU and memory usage. 
 
10. Decides content of the database 

 

A database system has many kind of content information in it. DBA decides fields, types 
of fields, and range of values of the content in the database system. One can say that 
DBA decides the structure of database files. 
 
11. Provides help and support to user 

 

If any user needs help at any time then it is the duty of DBA to help him. Complete 
support is given to the users who are new to database by the DBA. 
 
12. Database implementation 

 

Database has to be implemented before anyone can start using it. So DBA implements 
the database system. DBA has to supervise the database loading at the time of its 
implementation. 
 
13. Improve query processing performance 

 

Queries made by the users should be performed speedily. As we have discussed that 
users need fast retrieval of answers so DBA improves query processing by improving 
their performance. 
So these were the Role, Duties and Responsibilities of database Administrator( DBA). If 
you liked them then please share then with your friends. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



28 
 

Unit - II 

 

Data Models 

Brief overview of Hierarchical and Network Model 
 

In Hierarchical data model, relationship between table and data is defined in parent 
child structure. In this structure data are arranged in the form of a tree structure. This 
model supports one-to-one and one-to-many relationships. 

On the other hand, network model arrange data in graph structure. In this model each 
parents can have multiple children and children can also have multiple parents. This 
model supports many to many relationships also. 

Sr. 
No. 

Key Hierarchical Data Model Network Data Model 

1 Basic  Relationship between 
records is of the parent child 
type 

Relationship between records is 
expressed in the form of pointers 
or links. 

2         Data 
Inconsistency  

It can have data 
inconsistency during the 
updation and deletion of the 
data  

No Data inconsistency  

3 Traversing  Traversing of data is 
complex  

Data traversing is easy because 
node can be accessed from 
parent to child or child to parent  

4 Relationship It does not support many to 
many relationships   

It support many to many 
relationships   

5 Structure  Its create tree like structure  It support graph like structure  

 
 
 
 



29 
 

Detailed study of Relational Model (Relations, Properties) 
 

Relational data model is the primary data model, which is used widely around the world 
for data storage and processing. This model is simple and it has all the properties and 
capabilities required to process data with storage efficiency. 

Concepts 

Tables −  
 
In relational data model, relations are saved in the format of Tables. This format stores 
the relation among entities. A table has rows and columns, where rows represents 
records and columns represent the attributes. 

Tuple −  
 
A single row of a table, which contains a single record for that relation is called a tuple. 

Relation instance −  
 
A finite set of tuples in the relational database system represents relation instance. 
Relation instances do not have duplicate tuples. 

Relation schema −  
 
A relation schema describes the relation name (table name), attributes, and their 
names. 

Relation key −  
 
Each row has one or more attributes, known as relation key, which can identify the row 
in the relation (table) uniquely. 

Attribute domain −  
 
Every attribute has some pre-defined value scope, known as attribute domain. 

Constraints 

Every relation has some conditions that must hold for it to be a valid relation. These 
conditions are called Relational Integrity Constraints. There are three main integrity 
constraints − 

 Key constraints 
 

 Domain constraints 
 

 Referential integrity constraints 



30 
 

Key Constraints 

There must be at least one minimal subset of attributes in the relation, which can 
identify a tuple uniquely. This minimal subset of attributes is called key for that relation. 
If there are more than one such minimal subsets, these are called candidate keys. 

Key constraints force that − 

 in a relation with a key attribute, no two tuples can have identical values for key 
attributes. 

 a key attribute can not have NULL values. 

Key constraints are also referred to as Entity Constraints. 

Domain Constraints 

Attributes have specific values in real-world scenario. For example, age can only be a 
positive integer. The same constraints have been tried to employ on the attributes of a 
relation. Every attribute is bound to have a specific range of values. For example, age 
cannot be less than zero and telephone numbers cannot contain a digit outside 0-9. 

Referential integrity Constraints 

Referential integrity constraints work on the concept of Foreign Keys. A foreign key is a 
key attribute of a relation that can be referred in other relation. 

Referential integrity constraint states that if a relation refers to a key attribute of a 
different or same relation, then that key element must exist. 

 
Now let‘s get back to our examination of basic relational concepts. In this section, I want 

to focus on some specific properties of relations themselves. First of all, every relation 

has a heading and a body: The heading is a set of attributes (where by the 

term attribute I mean, very specifically, an attribute-name/type-name pair, and no two 

attributes in the same heading have the same attribute name), and the body is a set of 

tuples that conform to that heading. In the case of the suppliers relation in Figure 1-3, 

for example, there are four attributes in the heading and five tuples in the body. Note, 

therefore, that a relation doesn‘t really contain tuples—it contains a body, and that body 

in turn contains the tuples—but we do usually talk as if relations contained tuples 

directly, for simplicity. 

By the way, although it‘s strictly correct to say the heading consists of attribute-

name/type-name pairs, it‘s usual to omit the type names in pictures like Figure 1-3 and 

hence to pretend the heading is just a set of attribute names. For example, the STATUS 

attribute does have a type—INTEGER, let‘s say—but I didn‘t show it in Figure 1-3. But 

you should never forget it‘s there! 

https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample


31 
 

Next, the number of attributes in the heading is the degree (sometimes the arity), and 

the number of tuples in the body is the cardinality. For example, relation S in Figure 1-

3 has degree 4 and cardinality 5; likewise, relation P in that figure has degree 5 and 

cardinality 6, and relation SP in that figure has degree 3 and cardinality 12. Note: The 

term degree is used in connection with tuples also.[11] For example, the tuples in 

relation S are (like relation S itself) all of degree 4. 

Next, relations never contain duplicate tuples. This property follows because a body is 

defined to be a set of tuples, and sets in mathematics don‘t contain duplicate elements. 

Now, SQL fails here, as I‘m sure you know: SQL tables are allowed to contain duplicate 

rows and thus aren‘t relations, in general. Please understand, therefore, that throughout 

this book I always use the term ―relation‖ to mean a relation—without duplicate tuples, 

by definition—and not an SQL table. Please understand too that relational operations 

always produce a result without duplicate tuples, again by definition. For example, 

projecting the suppliers relation of Figure 1-3 on CITY produces the result shown here 

on the left and not the one on the right: 

(The result on the left can be obtained via the SQL query SELECT DISTINCT CITY 

FROM S. Omitting that DISTINCT leads to the nonrelational result on the right. Note in 

particular that the table on the right has no double underlining; that‘s because it has no 

key, and hence no primary key a fortiori.) 

Next, the tuples of a relation are unordered, top to bottom. This property follows 

because, again, a body is defined to be a set, and sets in mathematics have no ordering 

to their elements (thus, for example, {a,b,c} and {c,a,b} are the same set in 

mathematics, and a similar remark naturally applies to the relational model). Of course, 

when we draw a relation as a table on paper, we do have to show the rows in some top 

to bottom order, but that ordering doesn‘t correspond to anything relational. In the case 

of the suppliers relation as depicted in Figure 1-3, for example, I could have shown the 

rows in any order—say supplier S3, then S1, then S5, then S4, then S2—and the 

picture would still represent the same relation. Note: The fact that relations have no 

ordering to their tuples doesn‘t mean queries can‘t include an ORDER BY specification, 

but it does mean such queries produce a result that‘s not a relation. ORDER BY is 

useful for displaying results, but it isn‘t a relational operator as such. 

In similar fashion, the attributes of a relation are also unordered, left to right, because a 

heading too is a mathematical set. Again, when we draw a relation as a table on paper, 

we have to show the columns in some left to right order, but that ordering doesn‘t 

correspond to anything relational. In the case of the suppliers relation as depicted 

in Figure 1-3, for example, I could have shown the columns in any left to right order—

say STATUS, SNAME, CITY, SNO—and the picture would still represent the same 

relation in the relational model. Incidentally, SQL fails here too: SQL tables do have a 

https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s06.html#ftn.CHP-1-FN-9
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample


32 
 

left to right ordering to their columns (another reason why SQL tables aren‘t relations, in 

general). For example, these two pictures represent the same relation but different SQL 

tables: 

(The corresponding SQL queries are SELECT SNO, CITY FROM S and SELECT CITY, 

SNO FROM S, respectively. Now, you might be thinking that the differences between 

these two queries, and between these two tables, are hardly very significant; in fact, 

however, they have some serious consequences, some of which I‘ll be touching on in 

later chapters. See, for example, the discussion of SQL‘s explicit JOIN operator 

in Chapter 6.) 

Finally, relations are always normalized (equivalently, they‘re in first normal form, 

1NF).[12] Informally, what this means is that, in terms of the tabular picture of a relation, 

at every row and column intersection we always see just a single value. More formally, it 

means that every tuple in every relation contains just a single value, of the appropriate 

type, in every attribute position. Note: I‘ll have quite a lot more to say on this particular 

issue in the next chapter. 

Before I finish with this section, I‘d like to emphasize something I‘ve touched on several 

times already: namely, the fact that there‘s a logical difference between a relation as 

such, on the one hand, and a picture of a relation as shown in, for example, Figure 1-

1 and Figure 1-3, on the other. To say it one more time, the constructs in Figure 1-

1 and Figure 1-3 aren‘t relations at all but, rather, pictures of relations—which I 

generally refer to as tables, despite the fact that table is a loaded word in SQL contexts. 

Of course, relations and tables do have certain points of resemblance, and in informal 

contexts it‘s usual, and usually acceptable, to say they‘re the same thing. But when 

we‘re trying to be precise—and right now I am trying to be a little bit precise—then we 

do have to recognize that the two concepts are not identical. 

As an aside, I observe that, more generally, there‘s a logical difference between a thing 

of any kind and a picture of that thing. There‘s a famous painting by Magritte that 

beautifully illustrates the point I‘m trying to make here. The painting is of an ordinary 

tobacco pipe, but underneath Magritte has written Ceçi n‘est pas une pipe ... the point 

being, of course, that obviously the painting isn‘t a pipe—instead, it‘s a picture of a pipe. 

All of that being said, I should now say too that it‘s actually a major advantage of the 

relational model that its basic abstract object, the relation, does have such a simple 

representation on paper; it‘s that simple representation on paper that makes relational 

systems easy to use and easy to understand, and makes it easy to reason about the 

way such systems behave. However, it‘s unfortunately also the case that that simple 

representation does suggest some things that aren‘t true (e.g., that there‘s a top to 

bottom tuple ordering). 

https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch06.html
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s06.html#ftn.CHP-1-FN-10
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_departments-and-employees_databasems
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_departments-and-employees_databasems
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_departments-and-employees_databasems
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_departments-and-employees_databasems
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample


33 
 

And one further point: I‘ve said there‘s a logical difference between a relation and a 

picture of a relation. The concept of logical difference derives from a dictum of 

Wittgenstein‘s: 

All logical differences are big differences. 

This notion is an extraordinarily useful one; as a ―mind tool,‖ it‘s a great aid to clear and 

precise thinking, and it can be very helpful in pinpointing and analyzing some of the 

confusions that are, unfortunately, all too common in the database world. I‘ll be 

appealing to it many times in the pages ahead. Meanwhile, let me point out that we‘ve 

encountered quite a few important logical differences already. Here are some of them: 

SQL vs. the relational model 

Model vs. implementation 

Data model (first sense) vs. data model (second sense) 

And we‘ll be meeting many more in the pages ahead. 

Some Crucial Points 

At this juncture I‘d like to mention some crucial points that I‘ll be elaborating on in later 

chapters (especially Chapter 3). The points in question are these: 

Every subset of a tuple is a tuple: For example, consider the tuple for supplier S1 

in Figure 1-3. That tuple has four components, corresponding to the four attributes 

SNO, SNAME, STATUS, and CITY. And if we remove (say) the SNAME component, 

what‘s left is indeed still a tuple: viz., a tuple with three components (a tuple of degree 

three). 

Every subset of a heading is a heading: For example, consider the heading of the 

suppliers relation in Figure 1-3. That heading has four attributes: SNO, SNAME, 

STATUS, and CITY. And if we remove (say) the SNAME and STATUS attributes, what‘s 

left is still a heading, a heading of degree two. 

Every subset of a body is a body: For example, consider the body of the suppliers 

relation in Figure 1-3. That body has five tuples, corresponding to the five suppliers S1, 

S2, S3, S4, and S5. And if we remove (say) the S1 and S3 tuples, what‘s left is still a 

body, a body of cardinality three. 

Note: Perhaps I should state for the record here that throughout this book—in 

accordance with normal practice—I take expressions of the form ―B is a subset of A‖ to 

include the possibility that A and B might be equal. Thus, for example, every tuple is a 

subset of itself (and so is every heading, and so is every body). When I want to exclude 

https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch03.html
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_suppliers-and-parts_databasemsample


34 
 

such a possibility, I‘ll talk explicitly in terms of proper subsets. For example, our usual 

tuple for supplier S1 is certainly a subset of itself, but it isn‘t a proper subset of itself. 

What‘s more, the foregoing remarks apply equally to supersets, mutatis mutandis; for 

example, the tuple for supplier S1 is a superset of itself, but not a proper superset of 

itself.[13] 

I‘d also like to say something about the crucial notion of equality—especially as that 

notion applies to tuples and relations specifically. In general, two values are equal if and 

only if they‘re the very same value. For example, the integer 3 is equal to the integer 3, 

and not to anything else—in particular, not to any other integer. In exactly the same 

way, two tuples are equal if and only if they‘re the very same tuple. With reference 

to Figure 1-1, for example, the tuple for supplier S1 is equal to the tuple for supplier S1, 

and not to anything else—in particular, not to any other tuple. In other words, two tuples 

are equal if and only if (a) they involve exactly the same attributes and (b) 

corresponding attribute values are equal in turn. 

Moreover (this might seem obvious, but it needs to be said), two tuples are duplicates of 

each other if and only if they‘re equal. 

Turning now to relations: In exactly the same way, two relations are equal if and only if 

they‘re the very same relation. With reference to Figure 1-1, for example, the suppliers 

relation is equal to the suppliers relation and not to anything else—in particular, not to 

any other relation. In other words, two relations are equal if and only if, in turn, their 

headings are equal and their bodies are equal. 

 
Key & Integrity rules 
 

Integrity Rules are imperative to a good database design. Most RDBMS have these 
rules automatically, but it is safer to just make sure that the rules are already applied in 
the design. There are two types of integrity mentioned in integrity rules, entity and 
reference. Two additional rules that aren't necessarily included in integrity rules but are 
pertinent to database designs are business rules and domain rules. 

Entity integrity exists when each primary key within a table has a value that is unique. 
this ensures that each row is uniquely identified by the primary key.One requirement for 
entity integrity is that a primary key cannot have a null value. The purpose of this 
integrity is to have each row to have a unique identity, and foreign key values can 
properly reference primary key values. 

Reference integrity exists when a foreign contains a value that value refers to an exiting 
tuple/row in another relation. The purpose of reference integrity is to make it impossible 
to delete a row in one table whose primary key has mandatory matching foreign key 
values in another table. 

https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s06.html#ftn.CHP-1-FN-11
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_departments-and-employees_databasems
https://www.oreilly.com/library/view/sql-and-relational/9781449319724/ch01s04.html#the_departments-and-employees_databasems


35 
 

Business rules are constraints or defintions created by some aspect of a business. They 
can apply to almost all aspects of a business and are meant to describte operations of a 
business. An example of a business rule might be no credit check is to be performed on 
return customers. This example would change a database design for a car company. 
 
Domain rules or integrity specify that al columns in a database must be declared upon a 
defined domain. A domain is a set values of the same value type. 
 
Other integrity rules include not null and unique constraints. The not null constraint can 
be placed on a column to ensure that every row in the table has a value for that column. 
The unique constraint is restriction placed on a column to ensure that no duplicate 
values exist for that column. 

UNIQUE Key Integrity Constraints 

A UNIQUE key integrity constraint requires that every value in a column or set of 
columns (key) be unique—that is, no two rows of a table have duplicate values in a 
specified column or set of columns. 

This section includes the following topics: 

 Unique Keys 
 Combining UNIQUE Key and NOT NULL Integrity Constraints 

Unique Keys 

The columns included in the definition of the UNIQUE key constraint are called 
the unique key. If the unique key consists of more than one column, then that group of 
columns is called a composite unique key. 

Unique key is often incorrectly used as a synonym for the term UNIQUE key 
constraint or UNIQUE index. However, key refers only to the column or set of columns 
used in the definition of the integrity constraint. 

For example, the UNIQUE  key constraint might let you enter an area code and 
telephone number any number of times, but the combination of a given area code and 
given telephone number cannot be duplicated in the table. This eliminates unintentional 
duplication of a telephone number. 

Combining UNIQUE Key and NOT NULL Integrity Constraints 

Columns with both unique keys and NOT NULL integrity constraints are common. This 
combination forces the user to enter values in the unique key and also eliminates the 
possibility that any new row's data will ever conflict with an existing row's data. 

https://docs.oracle.com/cd/B28359_01/server.111/b28318/data_int.htm#BABJBJCA
https://docs.oracle.com/cd/B28359_01/server.111/b28318/data_int.htm#BABDIEDF


36 
 

PRIMARY KEY Integrity Constraints 

Each table in the database can have at most one PRIMARY KEY constraint. The values 
in the group of one or more columns subject to this constraint constitute the unique 
identifier of the row. In effect, each row is named by its primary key values. 

The Oracle Database implementation of the PRIMARY KEY integrity constraint 
guarantees that both of the following are true: 

 No two rows of a table have duplicate values in the specified column or set of 
columns. 

 The primary key columns do not allow nulls. That is, a value must exist for the 
primary key columns in each row. 

This section includes the following topics: 

 Primary Keys 
 PRIMARY KEY Constraints and Indexes 

Primary Keys 

The columns included in the definition of a table's PRIMARY KEY integrity constraint 
are called the primary key. Although it is not required, every table should have a primary 
key so that: 

 Each row in the table can be uniquely identified 
 No duplicate rows exist in the table 

PRIMARY KEY Constraints and Indexes 

Oracle Database enforces all PRIMARY KEY constraints using indexes. The primary 
key constraint created for a column is enforced by the implicit creation of: 

 A unique index on that column 
 A NOT NULL constraint for that column 

Composite primary key constraints are limited to 32 columns, which is the same 
limitation imposed on composite indexes. The name of the index is the same as the 
name of the constraint. Also, you can specify the storage options for the index by 
including the ENABLE clause in the CREATE TABLE or ALTER TABLE statement used 
to create the constraint. If a usable index exists when a primary key constraint is 
created, then the primary key constraint uses that index rather than implicitly creating a 
new one. 

 
 

https://docs.oracle.com/cd/B28359_01/server.111/b28318/data_int.htm#BABGADJJ
https://docs.oracle.com/cd/B28359_01/server.111/b28318/data_int.htm#BABBJBDH


37 
 

Comparison of Hierarchical 
 

Classification, in its widest sense, has to do with forms of the relatedness and with the 

organization and display of the relations in a useful manner. The items to be studied 

could be anything: people, bacteria, religions, books, etc. The attributes in each case 

would be those features of the items that are of interest for the purpose of the study [1]. 

Classifications are generally pictured in the form of hierarchical trees, also called a 

dendrogram. A dendrogram is the graphical representation of an ultrametric (= 

cophenetic) matrix; so dendrograms can be compared to one another by comparing 

their cophenetic matrices [2]. 

Cluster Analysis (CA), Principal Components Analysis (PCA) and Discriminant Analysis 

(DA) are three of the primary methods of modern multivariate analysis. Because of its 

utility, clustering has emerged as one of the leading methods of multivariate analysis [3]. 

Cluster analysis is a multivariate statistical technique which was originally developed for 

biological classification. Biologists Robert Soka1 and Peter Sneath published their 

seminal text ‗Principles of Numerical Taxonomy‘ in 1963. Sokal and Sneath 

demonstrated that cluster analysis could be utilized to efficiently classification a data set 

which contained all relevant characteristics of an organism. When the organisms had 

been classified based on these characteristics, it could be determined in which way they 

differed, and if they belonged to different species. In this way, Sokal and Sneath 

asserted, researchers could trace the path of evolution from one species to another [4]. 

In this study for clustering, two measures of cluster ‗goodness‘ or quality are used. One 

type of measure allows us to compare different sets of clusters without reference to 

external knowledge and is called an internal quality which is used as a measure of 

‗overall similarity‘ based on the pairwise similarity of documents in a cluster. The other 

type of measures allows evaluating how well the clustering is working by comparing the 

groups produced by the clustering techniques to known classes. This type of measure is 

called an external quality measure, which is not scope of this study [5]. 

The joining or tree clustering method uses the dissimilarities (similarities) or distances 

(Euclidean distance, squared Euclidean distance, city-block (Manhattan) distance, 

Chebychev distance, power distance, Mahalanobis distance, etc.) between objects 

when forming the clusters. Similarities are a set of rules that serve as criteria for 

grouping or separating items. These distances (similarities) can be based on a single 

dimension or multiple dimensions, with each dimension representing a rule or condition 

for grouping objects. The joining algorithm does not ‗care‘ whether the distances that 

are ‗fed‘ to it are actual real distances, or some other derived measure of distance that 

https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR1
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR2
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR3
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR4
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR5


38 
 

is more meaningful to the researcher; and it is up to the researcher to select the right 

method for his/her specific application [6]. 

The next step is to identify how one can find the natural clusters among items 

characterized by many attributes. A number of cluster analysis procedures (single 

linkage (nearest neighbor), Complete linkage (furthest neighbor), Unweighted pair-

group average (UPGMA), Weighted pair-group average (WPGMA), Unweighted pair-

group centroid (UPGMC), Weighted pair-group centroid (median), Ward‘s method, etc.) 

are available; many of these begin with an n-dimensional space in which each entity is 

represented by a single point. The dimensions in the space represent the characteristics 

upon which the entities are to be compared. Similarity between entities can be 

measured by: (1) the correlation of entities‘ scores on the dimensions (cophenetic 

correlation) or (2) the distance between points in the space (points closest to each other 

are most similar) [7, 8]. 

Suppose that the original data {Xi}{Xi} have been modeled using a cluster method to 

produce a dendrogram {Ti}{Ti}; that is, a simplified model in which data that are ‗close‘ 

have been grouped into a hierarchical tree. Define the following distance 

measures. x(i,j)=|Xi−Xj|x(i,j)=|Xi−Xj|, the ordinary Euclidean distance between the i th 

and j th observations. t(i,j)=t(i,j)= the dendrogrammatic distance between the model 

points TiTi and TjTj. This distance is the height of the node at which these two points 

are first joined together. Then, letting x be the average of the x(i,j)x(i,j), and letting t be 

the average of the t(i,j)t(i,j), the cophenetic correlation coefficient c is defined as in (1) 

[9]. 

 

Since its introduction by Sokal and Rohlf [10], the cophenetic correlation coefficient has 

been widely used in numerical phenetic studies, both as a measure of degree of fit of a 

classification to a set of data and as a criterion for evaluating the efficiency of various 

clustering techniques [11]. In statistics, and especially in biostatistics, cophenetic 

correlation (more precisely, the cophenetic correlation coefficient) is a measure of how 

faithfully a dendrogram preserves the pairwise distances between the original 

unmodeled data points. Although it has been most widely applied in the field of 

biostatistics (typically to assess cluster-based models of DNA sequences, or other 

taxonomic models), it can also be used in other fields of inquiry where raw data tend to 

occur in clumps, or clusters. This coefficient has also been proposed for use as a test 

for nested clusters [12]. 

The problem of comparing classifications with numerical methods is not new; the first 

effective numerical method known to us is the ‗cophenetic correlation‘ technique of 

Sokal and Rohlf [10]. Beginning with the development of cophenetic correlations 

https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR6
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR7
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR8
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR9
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR10
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR11
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR12
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR10


39 
 

methods for comparison of dendrograms have recently been the object of strong 

interest. Baker [13] investigated the impact of observational errors on the dendrograms 

produced by the complete linkage and single linkage hierarchical grouping techniques. 

The goodness of fit of the dendrograms was measured by means of the Goodman-

Kruskal gamma coefficient. The gamma coefficients indicated that the single linkage 

grouping technique was more sensitive to the type of data errors employed than the 

complete linkage technique. Hubert [14] compared two rank orderings of the object 

pairs. He tested hypothesis that the given set of proximity values have been assigned 

randomly by referring the Goodman-Kruskal rank correlation γ statistic to an 

approximate permutation distribution. Kuiper and Fisher [15] compared six hierarchical 

clustering procedures (single linkage, complete linkage, median, average linkage, 

centroid and Ward‘s method) for multivariate normal data, assuming that the true 

number of clusters was known. The authors used the Rand index, which gives a 

proportion of correct groupings, to compare the clustering methods. In their study for 

clusters of equal sizes, Ward‘s method and complete linkage method, with very unequal 

cluster sizes centroid and average linkage method found best, respectively. Blashfield 

[16] compared four types of hierarchical clustering methods (single linkage, complete 

linkage, average linkage and Ward‘s method) for accuracy in recovery of original 

population clusters. He used Cohen‘s statistic to measure the accuracy of the clustering 

methods. According to his results, Ward‘s method performed significantly better than 

the other clustering procedures and average linkage gave relatively poor results. 

According to Milligan [17], complete linkage and Ward‘s method reacted badly when 

outliers were introduced into the simulated data. 

Hands and Everitt [18] compared five hierarchical clustering techniques (single linkage, 

complete linkage, average, centroid, and Ward‘s method) on multivariate binary data. 

They found that Ward‘s method was the best overall than other hierarchical methods. 

Yao [19] discussed six classical clustering algorithms: k-means, SOM, EM-based 

clustering, classification EM clustering, fuzzy k-means, leader clustering and different 

combination scenarios of these algorithms. He used a count of cluster categories, 

classification accuracy and cluster entropy. Ferreira and Hitchcock [20] compared the 

performance of four major hierarchical methods (single linkage, complete linkage, 

average linkage and Ward‘s method) for clustering functional data. They used the Rand 

index to compare the performance of each clustering method. According to their study, 

Ward‘s method was usually the best, while average linkage performed best in some 

special situations, in particular, when the number of clusters is over specified. Milligan 

and Cooper [21] used four agglomerative hierarchical clustering methods to generate 

partition solutions and formed one factor in the overall design. These were the single 

link, complete link, group average (UPGMA) and Ward‘s minimum variance methods. 

As a result, they found that the single link technique was least effective while the group 

average and Ward‘s methods gave the best overall recovery. 

https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR13
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR14
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR15
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR16
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR17
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR18
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR19
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR20
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#ref-CR21


40 
 

Consider the studies in the literature and the importance of using the most convenient 

cluster method under different conditions (sample size, variables number and distance 

measures), a detailed simulation study is undertaken. This study gives more insight into 

the functioning of the cluster method under different conditions. The purpose of this 

research is to investigate the best clustering method under different conditions. 

Method 

In this study, seven cluster analysis methods are compared by the cophenetic 

correlation coefficient computed according to different clustering methods with a sample 

size ) and distance measures via a simulation study. The simulation program is 

developed in a MATLAB software development environment by the authors. We have 

567 different simulation scenarios and 100,000/n replications for each scenario. The 

performance is monitored by two different conditions that are mentioned in Table 1 and 

Table 2 with 7 cluster methods, 9 distance measures by cophenetic correlation 

coefficient in various settings of subgroup means, variances, sample size and variable 

numbers simultaneously. 

 
Network and Relational Model 
 

Network Model 

The network model is the extension of the hierarchical structure because it allows 
many-to-many relationships to be managed in a tree-like structure that allows multiple 
parents. 

There are two fundamental concepts of a network model − 

 Records contain fields which need hierarchical organization. 

 Sets are used to define one-to-many relationships between records that contain 
one owner, many members. 

A record may act as an owner in any number of sets, and a member in any number of 
sets. 

P.S. Set must not be confused with the mathematical set. 

A set is designed with the help of circular linked lists where one record type, the owner 
of the set also called as a parent, appears once in each circle, and a second record 
type, also known as the subordinate or child, may appear multiple times in each circle. 

A hierarchy is established between any two record types where one type (A) is the 
owner of another type (B). At the same time, another set can be developed where the 
latter set (B) is the owner of the former set (A). In this model, ownership is defined by 
the direction, thus all the sets comprise a general directed graph. Access to records is 
developed by the indexing structure of circular linked lists. 

https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#Tab1
https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2013-203#Tab2


41 
 

The network model has the following major features − 

 It can represent redundancy in data more efficiently than that in the hierarchical 
model. 
 

 There can be more than one path from a previous node to successor node/s. 
 

 The operations of the network model are maintained by indexing structure of 
linked list (circular) where a program maintains a current position and navigates 
from one record to another by following the relationships in which the record 
participates.  
 

 Records can also be located by supplying key values. 
 

The following diagram depicts a network model. An agent represents several clients and 
manages several entertainers. Each client schedules any number of engagements and 
makes payments to the agent for his or her services. Each entertainer performs several 
engagements and may play a variety of musical styles. 

 

 



42 
 

A collection of records is represented by a node, and a set structure helps to establish a 
relationship in a network helps to This development helps to relate a pair of nodes 
together by using one node as an owner and the other node as a member. A one-to-
many relationship is managed by set structure, which means that a record in the owner 
node can be related to one or more records in the member node, but a single record in 
the member node is related to only one record in the owner node. 

Additionally, a record in the member node cannot exist without being related to an 
existing record in the owner node. For example, a client must be assigned to an agent, 
but an agent with no clients can still be listed in the database. 

 

 

 

The above diagram shows a diagram of a basic set structure. One or more sets 
(connections) can be defined between a specific pair of nodes, and a single node can 
also be involved in other sets with other nodes in the database. 

The data can be easily accessed inside a network model with the help of an appropriate 
set structure. there are no restrictions on choosing the root node, the data can be 
accessed via any node and running backward or forward with the help of related sets. 

For example, when a user wants to find the agent who booked a specific engagement. 
He/she begins by locating the appropriate engagement record in the ENGAGEMENTS 
node, and then determines which client "owns" that engagement record via the 
Schedule set structure. Finally, he/she identifies the agent that "owns" the client record 
via the Represent set structure. 



43 
 

Advantages 

 fast data access. 
 

 It also allows users to create queries that are more complex than those they 
created using a hierarchical database. So, a variety of queries can be run over 
this model. 
 

Disadvantages 

 A user must be very familiar with the structure of the database to work through 
the set structures. 
 

 Updating inside this database is a tedious task. One cannot change a set 
structure without affecting the application programs that use this structure to 
navigate through the data. If you change a set structure, you must also modify all 
references made from within the application program to that structure. 

 
 
Relational Model 

Relational data model is the primary data model, which is used widely around the world 
for data storage and processing. This model is simple and it has all the properties and 
capabilities required to process data with storage efficiency. 

Concepts 

Tables −  
 
In relational data model, relations are saved in the format of Tables. This format stores 
the relation among entities. A table has rows and columns, where rows represents 
records and columns represent the attributes. 

Tuple −  
 
A single row of a table, which contains a single record for that relation is called a tuple. 

Relation instance −  
 
A finite set of tuples in the relational database system represents relation instance. 
Relation instances do not have duplicate tuples. 
 

 

 



44 
 

Relation schema −  
 
A relation schema describes the relation name (table name), attributes, and their 
names. 

Relation key −  
 
Each row has one or more attributes, known as relation key, which can identify the row 
in the relation (table) uniquely. 

Attribute domain − Every attribute has some pre-defined value scope, known as 
attribute domain. 

Constraints 

Every relation has some conditions that must hold for it to be a valid relation. These 
conditions are called Relational Integrity Constraints. There are three main integrity 
constraints − 

 Key constraints 
 

 Domain constraints 
 

 Referential integrity constraints 

Key Constraints 

There must be at least one minimal subset of attributes in the relation, which can 
identify a tuple uniquely. This minimal subset of attributes is called key for that relation. 
If there are more than one such minimal subsets, these are called candidate keys. 

Key constraints force that − 

 in a relation with a key attribute, no two tuples can have identical values for key 
attributes. 

 a key attribute can not have NULL values. 

Key constraints are also referred to as Entity Constraints. 

Domain Constraints 

Attributes have specific values in real-world scenario. For example, age can only be a 
positive integer. The same constraints have been tried to employ on the attributes of a 
relation. Every attribute is bound to have a specific range of values. For example, age 
cannot be less than zero and telephone numbers cannot contain a digit outside 0-9. 

Referential integrity Constraints 

Referential integrity constraints work on the concept of Foreign Keys. A foreign key is a 
key attribute of a relation that can be referred in other relation. 



45 
 

Referential integrity constraint states that if a relation refers to a key attribute of a 
different or same relation, then that key element must exist. 

 
Difference between Network and Relational Data Model : 
 

NETWORK DATA MODEL RELATIONAL DATA MODEL 

It organizes records to one another 

through links or pointers. 

It organizes records in form of table and 

relationship between tables are set using 

common fields. 

It organizes records in form of directed 

graphs. It organizes records in form of tables. 

In this relationship between various 

records is represented physically via 

linked list. 

In this relationship between various 

records is represented logically via 

tables. 

There is lack of declarative querying 

facilities. 

It provides declarative query facility 

using SQL. 

Complexity increases burden on 

programmer for database design as well 

as data manipulation. 

As physical level details are hidden from 

end users so this model is very simple to 

understand. 

Retrieval algorithms are complex but 

symmetric. 

Retrieval algorithms are simple and 

symmetric. 

There is partial data independence in this This model provides data independence. 



46 
 

NETWORK DATA MODEL RELATIONAL DATA MODEL 

model. 

VAX-DBMS, DMS-1100 of UNIVAC and 

SUPRADBMS‘s use this model. 

It is mostly used in real world 

applications. Oracle, SQL. 

 
CODD’s rules for Relational Model 
 

Dr. Edgar F. Codd, after his extensive research on the Relational Model of database 
systems, came up with twelve rules of his own, which according to him, a database 
must obey in order to be regarded as a true relational database. 

These rules can be applied on any database system that manages stored data using 
only its relational capabilities. This is a foundation rule, which acts as a base for all the 
other rules. 

Rule 1: Information Rule 

The data stored in a database, may it be user data or metadata, must be a value of 
some table cell. Everything in a database must be stored in a table format. 

Rule 2: Guaranteed Access Rule 

Every single data element (value) is guaranteed to be accessible logically with a 
combination of table-name, primary-key (row value), and attribute-name (column 
value). No other means, such as pointers, can be used to access data. 

Rule 3: Systematic Treatment of NULL Values 

The NULL values in a database must be given a systematic and uniform treatment. 
This is a very important rule because a NULL can be interpreted as one the following − 
data is missing, data is not known, or data is not applicable. 

Rule 4: Active Online Catalog 

The structure description of the entire database must be stored in an online catalog, 
known as data dictionary, which can be accessed by authorized users. Users can use 
the same query language to access the catalog which they use to access the database 
itself. 

 



47 
 

Rule 5: Comprehensive Data Sub-Language Rule 

A database can only be accessed using a language having linear syntax that supports 
data definition, data manipulation, and transaction management operations. This 
language can be used directly or by means of some application. If the database allows 
access to data without any help of this language, then it is considered as a violation. 

Rule 6: View Updating Rule 

All the views of a database, which can theoretically be updated, must also be 
updatable by the system. 

Rule 7: High-Level Insert, Update, and Delete Rule 

A database must support high-level insertion, updation, and deletion. This must not be 
limited to a single row, that is, it must also support union, intersection and minus 
operations to yield sets of data records. 

Rule 8: Physical Data Independence 

The data stored in a database must be independent of the applications that access the 
database. Any change in the physical structure of a database must not have any 
impact on how the data is being accessed by external applications. 

Rule 9: Logical Data Independence 

The logical data in a database must be independent of its user‘s view (application). Any 
change in logical data must not affect the applications using it. For example, if two 
tables are merged or one is split into two different tables, there should be no impact or 
change on the user application. This is one of the most difficult rule to apply. 

Rule 10: Integrity Independence 

A database must be independent of the application that uses it. All its integrity 
constraints can be independently modified without the need of any change in the 
application. This rule makes a database independent of the front-end application and 
its interface. 

Rule 11: Distribution Independence 

The end-user must not be able to see that the data is distributed over various locations. 
Users should always get the impression that the data is located at one site only. This 
rule has been regarded as the foundation of distributed database systems. 

 

 



48 
 

Rule 12: Non-Subversion Rule 

If a system has an interface that provides access to low-level records, then the 
interface must not be able to subvert the system and bypass security and integrity 
constraints. 

 
E-R diagram 
 

Let us now learn how the ER Model is represented by means of an ER diagram. Any 
object, for example, entities, attributes of an entity, relationship sets, and attributes of 
relationship sets, can be represented with the help of an ER diagram. 

Entity 

Entities are represented by means of rectangles. Rectangles are named with the entity 
set they represent. 

 

Attributes 

Attributes are the properties of entities. Attributes are represented by means of 
ellipses. Every ellipse represents one attribute and is directly connected to its entity 
(rectangle). 

 



49 
 

If the attributes are composite, they are further divided in a tree like structure. Every 
node is then connected to its attribute. That is, composite attributes are represented by 
ellipses that are connected with an ellipse. 

 

 

Multivalued attributes are depicted by double ellipse. 

 



50 
 

Derived attributes are depicted by dashed ellipse. 

 

 

 

 

Relationship 

Relationships are represented by diamond-shaped box. Name of the relationship is 
written inside the diamond-box. All the entities (rectangles) participating in a 
relationship, are connected to it by a line. 

Binary Relationship and Cardinality 

A relationship where two entities are participating is called a binary relationship. 
Cardinality is the number of instance of an entity from a relation that can be associated 
with the relation. 

 One-to-one − When only one instance of an entity is associated with the 
relationship, it is marked as '1:1'. The following image reflects that only one 
instance of each entity should be associated with the relationship. It depicts one-
to-one relationship. 



51 
 

 

 

 

 One-to-many − When more than one instance of an entity is associated with a 
relationship, it is marked as '1:N'. The following image reflects that only one 
instance of entity on the left and more than one instance of an entity on the right 
can be associated with the relationship. It depicts one-to-many relationship. 

 

 

 



52 
 

 Many-to-one − When more than one instance of entity is associated with the 
relationship, it is marked as 'N:1'. The following image reflects that more than 
one instance of an entity on the left and only one instance of an entity on the 
right can be associated with the relationship. It depicts many-to-one relationship. 

 

 

 

 Many-to-many − The following image reflects that more than one instance of an 
entity on the left and more than one instance of an entity on the right can be 
associated with the relationship. It depicts many-to-many relationship. 
 
 

 



53 
 

Participation Constraints 

 Total Participation − Each entity is involved in the relationship. Total 
participation is represented by double lines. 

 Partial participation − Not all entities are involved in the relationship. Partial 
participation is represented by single lines. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



54 
 

Unit - III 

 

 
Normalization 

Normalization concepts and update anomalies 

In this tutorial, you will learn about data normalization in SQL. Normalization is 

actually a database design method that arranges the tables in a database with 

reduced dependency and redundancy of data. Normalization splits up the bigger 

tables to smaller ones and integrated them through relationships. Normalization 

improves data integrity. If you fail to use normalization, you could end up facing 

anomalies namely insertion, update, and deletion. Insertion anomalies happen to 

suppose if we couldn‘t insert data into the table without another attribute‘s availability. 

Update anomalies are actually an inconsistency in the data which could lead to data 

redundancy and incomplete data update. Deletion anomalies happen if you lose 

some attributes because of deleting other attributes. 

 

Simply, the organization of data in the DB is called data normalization. Normalization 

actually demands the organization of columns and tables present in a DB to make 

sure that their dependants were correctly administered by the DB integrity 

constraints. It provides more efficiency because it splits up a bigger table to smaller 

ones. 

 

Purpose of Normalization 

 

As we all know, SQL is a language that is used to communicate with the DB. Any 

communication of data in the database has to be initiated and that must be 

normalized. Otherwise, you will end up in anomalies. It will improve data distribution 

as well. Normalization can be achieved by using normal forms. The normal forms we 

are going to learn are: 

 



55 
 

 1 NF (First Normal Form) 

 

 2 NF (Second Normal Form) 

 

 3 NF (Third Normal Form) and 

 

 Boyce Codd NF 

 

Let’s see one by one with examples. 

 

1 NF (First Normal Form) 

We investigate the atomicity problem in 1 NF. In this context, atomicity implies that 

the values present in the table should not be divided or split up further. Simply, one 

cell could not carry several values. It is considered as a violation in 1 NF if a table 

holds a multiple value attribute. For example, have a look at the table below: 

Student Admission No Student Name Mobile Number Outstanding Fees 

1PRI001 Aravindan -9678900476 25,000 

  -9556678854  

1PRI002 Darshan -9887765341 1,000 

1PRI003 Saravanan -9443356698 33,000 

1PRI004 Ramkumar -6345678810 50,000 

  -8667890476  

 

 

Evidently, you can notice that the phone number column contains more than one 

value and thus, it is a violation in 1 NF. If we apply 1 NF, the table will automatically  

get normalized (arranged) like as follows: 



56 
 

 

 

 

 

Student admission no Student Name Mobile Number Outstanding Fees 

1PRI001 Aravindan -9678900476 25,000 

1PRI001 Aravindan -9556678854 25,000 

1PRI002 Darshan -9887765341 1,000 

1PRI003 Saravanan -9443356698 33,000 

1PRI004 Ramkumar -6345678810 50,000 

1PRI004 Ramkumar -8667890476 50,000 

 

As per the above table, you could visualize every column with distinct values and thus 

we achieved atomicity using 1 NF. 

 

 Click Here – Get SQL Training with Real-Time Projects  

2NF (Second Normal Form) 

 

In the case of 2 NF, the basic need for satisfying 2 NF is that the table must be 

present in 1 NF and there should not be any partial dependency, which means the 

actual subset of the candidate key decides the attribute which is non-prime. Let‘s look 

at an example to understand 2 NF better! 

 

Student admission no Class Room number Classroom Name 

https://www.besanttechnologies.com/training-courses/oracle-training/sql-training-institute-in-chennai?utm_source=bt_blog


57 
 

Student admission no Class Room number Classroom Name 

1PRI001 South-A1 Blackberries 

1SEC001 South-A4 Avocado 

2PRI001 South-A2 Jingle bells 

2SEC001 South-A5 Craneberries 

 

normalized (arranged) as follows: 

 

The above table contains a composite primary key namely Student admission number 

and Classroom number. Here, Classroom location is a non-key attribute evidently. 

This Classroom location will depend on the Classroom number, which is actually a 

part of the primary key. Thus, the above table is a violation of 2 NF. In order to 

change the above table to 2 NF, we have to divide the table into two portions as 

follows: 

 

Student admission no Class Room number 

1PRI001 South-A1 

1SEC001 South-A4 

2PRI001 South-A2 

2SEC001 South-A5 



58 
 

 

I hope, you could visualize that the partial dependency has been removed in the 

second table by applying 2 NF. So, the column Class Room Name entirely depends 

on the table‘s primary key, i.e Class Room Number. 

 

3NF (Third Normal Form) 

 

In the case of 3 NF, it follows the same way that 2 NF functions. Here, the table must 

be present in 2 NF before working with 3 NF. Also, a transitive dependency is not 

allowed in 3 NF for non-prime attributes. This implies that the non-prime attributes 

which do not contain a candidate key will not depend on the rest of the non-prime 

attributes in a table. We can conclude transitive dependency is an indirect functional 

dependency, i.e A→C (which means A determines C) in which A→B and B→C (but 

the inverse is not valid i.e B→A is invalid) Let‘s get a clear understanding of 3 NF with 

the following example: 

 

Employee ID Employee Name Department ID Department Location 

1SW15TE01 Sarath 15TE01 Testing Hyderabad 

1SW15BE01 Ramesh 15BE01 SQL Chennai 

Student admission no Class Room number 

1PRI001 South-A1 

1SEC001 South-A4 

2PRI001 South-A2 

2SEC001 South-A5 



59 
 

Employee ID Employee Name Department ID Department Location 

1SW15DE01 Raj 15DE01 Dotnet Kochi 

1SW15DE02 Kumar 15DE02 Java Bengaluru 

 

Looking at the above table, we can understand that the Employee ID determines 

Department ID and Department ID determines the department. Thus, Employee ID 

determines Department via Department ID. This proves that we accomplished 

transitive function dependency. But, the above structure violates 3 NF because it 

does not satisfy the rules of 3 NF. So, we have to divide the tables as below: 

 

 

Employee ID Employee Name Department ID Location 

1SW15TE01 Sarath 15TE01 Hyderabad 

1SW15BE01 Ramesh 15BE01 Chennai 

1SW15DE01 Raj 15DE01 Kochi 

1SW15DE02 Kumar 15DE02 Bengaluru 



60 
 

From the above tables, you could visualize that the entire non-key attributes become 

completely dependent on the primary key. As in the first table, Employee Name, 

Department ID and Location depends on Employee ID, whereas in the second table, 

the Department depends on Department ID. 
 

Boyce Codd NF (BCNF) 

 

BCNF is also called as 3.5 NF because it is an upgrade of 3 NF. Two researchers 

Boyce and Codd developed this BCNF concept so as to address some particular 

anomalies that that doesn‘t fall under the 3 NF category. Like other NF techniques, 

BCNF also has certain conditions to be satisfied. First, BCNF should satisfy 3 NF. In 

the case of BCNF, if each and every functional dependency, X → Y, then, X will act 

as the Super key of that specific table. 

 

For example, have a look at the table below: 

 

Stud ID Course of Study Name of the Professor 

1SD17SW01 Java Magesh 

1SD17SW02 Dotnet Karthik 

1SD17SW03 C++ Praba 

Department ID Department 

15TE01 Testing 

15BE01 SQL 

15DE01 Dotnet 

15DE02 Java 



61 
 

Stud ID Course of Study Name of the Professor 

1SD17SW04 Dotnet Ramesh 

1SD17SW05 SQL Lokesh 

 

As per the above table, we can clarify the following: 

 

 Any student can select multiple subjects of study 

 You can have multiple teachers to teach one particular subject. 

 For every subject, a teacher has to allocated to the student. 

In the above table, except for the BCNF, all other NF techniques were satisfied. Let‘s 

discuss the reason of it. Stud ID and Course of Study provides the primary key. This 

implies that the Course of Study column is actually a prime attribute. We could see 

yet another dependency here, i.e Name of the Professor→ Course of Study.  

Here, Course of Study is actually a prime attribute whereas the Name of the 

Professor is a nonprime attribute, which is actually a violation of BCNF. Therefore, to 

achieve BCNF, we have to separate the table into two portions as Stud ID which is 

there already and another new column named Prof ID. 

 

Stud ID Prof ID 

1SD17SW01 1PF17SW01 

1SD17SW02 1PF17SW02 

1SD17SW03 1PF17SW03 

1SD17SW04 1PF17SW04 

1SD17SW05 1PF17SW05 

 

In the second table, Prof ID, Name of the Professor and Course of Study will be 

present. 

 

 



62 
 

Prof ID Name of the Professor Course of Study 

1PF17SW01 Magesh Java 

1PF17SW02 Karthik Dotnet 

1PF17SW03 Praba C++ 

1PF17SW04 Ramesh Dotnet 

1PF17SW05 Lokesh SQL 

 

With this, we achieved BCNF. We thus conclude this tutorial about Normalization in 

SQL. I hope you got a better understanding! 
 

Functional dependencies 

A functional dependency (FD) is a relationship between two attributes, typically between 
the PK and other non-key attributes within a table. For any relation R, attribute Y is 
functionally dependent on attribute X (usually the PK), if for every valid instance of X, 
that value of X uniquely determines the value of Y. This relationship is indicated by the 
representation below : 

X ———–> Y 

The left side of the above FD diagram is called the determinant, and the right side is 
the dependent. Here are a few examples. 

In the first example, below, SIN determines Name, Address and Birthdate. Given SIN, 
we can determine any of the other attributes within the table. 

 
SIN   ———-> Name, Address, Birthdate 

For the second example, SIN and Course determine the date completed 
(DateCompleted). This must also work for a composite PK. 
 

SIN, Course  ———>     DateCompleted 

The third example indicates that ISBN determines Title. 
 

ISBN  ———–>  Title 



63 
 

Rules of Functional Dependencies 

Consider the following table of data r(R) of the relation schema R(ABCDE) shown in 
Table 11.1. 

 

 

As you look at this table, ask yourself: What kind of dependencies can we observe 
among the attributes in Table R? Since the values of A are unique (a1, a2, a3, etc.), it 
follows from the FD definition that: 

A → B,    A → C,    A → D,    A → E 

 It also follows that  A →BC  (or any other subset of ABCDE). 
 This can be summarized as   A →BCDE. 
 From our understanding of primary keys, A is a primary key. 

Since the values of E are always the same (all e1), it follows that: 

A → E,   B → E,   C → E,   D → E 

However, we cannot generally summarize the above with  ABCD → E  because, in 
general,   A → E,   B → E,   AB → E. 

Other observations: 
 



64 
 

1. Combinations of BC are unique, therefore  BC → ADE. 
 

2. Combinations of BD are unique, therefore  BD → ACE. 
 

3. If C values match, so do D values. 
 

1. Therefore,  C → D 
 

2. However, D values don‘t determine C values 
 

3. So C does not determine D, and D does not determine C. 

Looking at actual data can help clarify which attributes are dependent and which are 
determinants.  

Inference Rules 

Armstrong’s axioms are a set of inference rules used to infer all the functional 
dependencies on a relational database. They were developed by William W. Armstrong. 
The following describes what will be used, in terms of notation, to explain these axioms. 

Let R(U) be a relation scheme over the set of attributes U. We will use the letters X, Y, 
Z to represent any subset of and, for short, the union of two sets of attributes, instead of 
the usual  X U Y. 

Axiom of reflexivity 

This axiom says, if Y is a subset of X, then X determines Y (see Figure 11.1). 

 

 

For example, PartNo —> NT123  where X (PartNo) is composed of more than one 
piece of information; i.e., Y (NT) and partID (123). 



65 
 

Axiom of augmentation 

The axiom of augmentation, also known as a partial dependency, says if X determines 
Y, then XZ determines YZ for any Z (see Figure 11.2 ). 

 

 

The axiom of augmentation says that every non-key attribute must be fully dependent 
on the PK. In the example shown below, StudentName, Address, City, Prov, and PC 
(postal code) are only dependent on the StudentNo, not on the StudentNo and Grade. 

StudentNo, Course —> StudentName, Address, City, Prov, PC, Grade, DateCompleted 

This situation is not desirable because every non-key attribute has to be fully dependent 
on the PK. In this situation, student information is only partially dependent on the PK 
(StudentNo). 

To fix this problem, we need to break the original table down into two as follows: 

 Table 1: StudentNo, Course,  Grade, DateCompleted 
 

 Table 2: StudentNo, StudentName, Address, City, Prov, PC 

Axiom of transitivity 

The axiom of transitivity says if X determines Y, and Y determines Z, then X must also 
determine Z (see Figure 11.3). 

The table below has information not directly related to the student; for instance, 
ProgramID and ProgramName should have a table of its own. ProgramName is not 
dependent on StudentNo; it‘s dependent on ProgramID. 

StudentNo  —> StudentName, Address, City, Prov, PC, ProgramID, ProgramName 

This situation is not desirable because a non-key attribute (ProgramName) depends on 
another non-key attribute (ProgramID). 

To fix this problem, we need to break this table into two: one to hold information about 
the student and the other to hold information about the program. 

 Table 1: StudentNo —> StudentName, Address, City, Prov, PC, ProgramID 



66 
 

 Table 2: ProgramID —> ProgramName 

However we still need to leave an FK in the student table so that we can identify which 
program the student is enrolled in. 

Union 

This rule suggests that if two tables are separate, and the PK is the same, you may 
want to consider putting them together. It states that if X determines Y and X 
determines Z then X must also determine Y and Z (see Figure 11.4). 

 

For example, if: 

 SIN —> EmpName 
 SIN —> SpouseName 

You may want to join these two tables into one as follows: 

SIN –> EmpName, SpouseName 

Some database administrators (DBA) might choose to keep these tables separated for 
a couple of reasons. One, each table describes a different entity so the entities should 
be kept apart. Two, if SpouseName is to be left NULL most of the time, there is no need 
to include it in the same table as EmpName. 

Decomposition 

Decomposition is the reverse of the Union rule. If you have a table that appears to 
contain two entities that are determined by the same PK, consider breaking them up 
into two tables. This rule states that if X determines Y and Z, then X determines Y and X 
determines Z separately (see Figure 11.5). 

 

Dependency Diagram 

A dependency diagram, shown in Figure 11.6, illustrates the various dependencies that 
might exist in a non-normalized table. A non-normalized table is one that has data 
redundancy in it. 
 



67 
 

 

The following dependencies are identified in this table: 

 ProjectNo and EmpNo, combined, are the PK. 

 Partial Dependencies: 

 

 ProjectNo —> ProjName 

 EmpNo —> EmpName, DeptNo, 

 

 ProjectNo, EmpNo —> HrsWork 

Transitive Dependency: 

 DeptNo —> DeptName 

Key Terms 

Armstrong’s axioms: a set of inference rules used to infer all the functional 

dependencies on a relational databaseDBA: database administrator 

decomposition: a rule that suggests if you have a table that appears to contain two 

entities that are determined by the same PK, consider breaking them up into two tables 

dependent: the right side of the functional dependency diagram 

determinant: the left side of the functional dependency diagram 

functional dependency (FD): a relationship between two attributes, typically between 

the PK and other non-key attributes within a table 

non-normalized table: a table that has data redundancy in it 

Union: a rule that suggests that if two tables are separate, and the PK is the same, 

consider putting them together 

Exercises 

See Chapter 12. 

Attributions 

This chapter of Database Design (including images, except as otherwise noted) is a 

derivative copy of Armstrong‘s axioms by Wikipedia the Free Encyclopedia licensed 

under Creative Commons Attribution-ShareAlike 3.0 Unported  

http://en.wikipedia.org/wiki/Armstrong%27s_axioms
http://creativecommons.org/licenses/by-sa/3.0/


68 
 

The following material was written by Adrienne Watt: 

1. some of Rules of Functional Dependencies 

2. Key Terms 

 

Multivalued and join dependencies:-  

Multivalued 

When existence of one or more rows in a table implies one or more other rows in the same 
table, then the Multi-valued dependencies occur. 

If a table has attributes P, Q and R, then Q and R are multi-valued facts of P. 

It is represented by double arrow − 

->-> 

 
For our example: 

P->->Q 
P->->R 

In the above case, Multivalued Dependency exists only if Q and R are independent attributes. 

A table with multivalued dependency violates the 4NF. 

Example 

Let us see an example &mins; 

<Student> 

StudentName CourseDiscipline Activities 

Amit Mathematics Singing 

Amit Mathematics Dancing 

Yuvraj Computers Cricket 



69 
 

Akash Literature Dancing 

Akash Literature Cricket 

Akash Literature Singing 

 

In the above table, we can see Students Amit and Akash have interest in more than one 
activity. 

This is multivalued dependency because CourseDiscipline of a student are independent of 
Activities, but are dependent on the student. 

Therefore, multivalued dependency − 

StudentName ->-> CourseDiscipline 

StudentName ->-> Activities 

 
The above relation violates Fourth Normal Form in Normalization. 

To correct it, divide the table into two separate tables and break Multivalued Dependency − 
 
<StudentCourse> 

StudentName CourseDiscipline 

Amit Mathematics 

Amit Mathematics 

Yuvraj Computers 

Akash Literature 

Akash Literature 



70 
 

Akash Literature 

 

<StudentActivities> 

StudentName Activities 

Amit Singing 

Amit Dancing 

Yuvraj Cricket 

Akash Dancing 

Akash Cricket 

Akash Singing 

 
This breaks the multivalued dependency and now we have two functional dependencies − 

StudentName -> CourseDiscipline 

StudentName - > Activities 

 

Join dependency 
 

If a table can be recreated by joining multiple tables and each of this table have a 
subset of the attributes of the table, then the table is in Join Dependency. It is a 
generalization of Multivalued Dependency 

Join Dependency can be related to 5NF, wherein a relation is in 5NF, only if it is already 
in 4NF and it cannot be decomposed further. 

Example 



71 
 

<Employee> 

 

EmpName EmpSkills EmpJob (Assigned Work) 

Tom Networking EJ001 

Harry Web Development EJ002 

Katie Programming EJ002 

 
The above table can be decomposed into the following three tables; therefore it is not in 
5NF: 
 
<EmployeeSkills> 

EmpName EmpSkills 

Tom Networking 

Harry Web Development 

Katie Programming 

<EmployeeJob> 

EmpName EmpJob 

Tom EJ001 

Harry EJ002 



72 
 

Katie EJ002 

<JobSkills> 

EmpSkills EmpJob 

Networking EJ001 

Web Development EJ002 

Programming EJ002 

 
Our Join Dependency − 

{(EmpName, EmpSkills ), ( EmpName, EmpJob), (EmpSkills, EmpJob)} 

The above relations have join dependency, so they are not in 5NF. That would mean 
that a join relation of the above three relations is equal to our original 
relation <Employee>. 

 

Normal Forms: (1 NF, 2 NF, 3NF, BCNF, 4NF, and 5NF) 

The next sections of this paper will describe each of the normal forms and how they are 
applied.  There will be examples used to describe the form and its application.  The 
examples chosen are obviously wrong and are designed to clearly demonstrate the 
normal form being discussed. 

In your actual design work the normalization problems will probably be more subtle and 
require a much more careful study to discover and repair. 

1st Normal Form (1NF) 

Reduce entities to first normal form (1NF) by removing repeating or multi-valued 
attributes to another, child entity. 

To understand 1st Normal Form we will use the table design below. 



73 
 

 

To discover the problem in this design we must consider the domains for the fields in 
the table.  The CustID is defined as the customer Primary key ID, the Name is the name 
of the customer, Contact1 is the name of a contact person, Contact2 is the name of a 
contact person, and Contact3 is the name of a contact person. 

The fact that Contact1, 1, and 3 all have the same domain definition proves that in fact 
there is only one attribute, contact person, and that we need multiple values for that 
attribute.  This is a multi-valued attribute. 

The 1st NF design for this situation is shown below. 

 

Notice the creation of the new entity for Contacts and the relation of that entity to the 
original Customer entity.  Using this new design the customer can have any number of 
contacts from none to the capacity of the table storing the contact names. 

What about the client who tells us that their customer will never have more than three 
contact names?  Do we really need to do this for those situations? 



74 
 

Well, reread what I said earlier about clients and the word never.  Besides that, if we 
provide the three fields for contact names and most customers have only one name, we 
are wasting a lot of space.  For a contact name of 40 characters and 1 million customer 
records that would amount to approximately 40 MB of wasted space. 

Also, the first customer that comes along with four or more contact names would require 
that the user either use two customer records, not store all of the contact names, or pay 
for a revision to the data design to allow the fourth name.  With the 1st Normal Form 
structure none of these things are an issue.  If the customer has only one contact then 
there is only one record in the Contacts table.  If the customer has 300 contact names, 
then there are 300 records in the contacts table. 

Reduce entities in 1NF to 2NF by removing attributes that are not dependent on 
the whole primary key. 

2nd Normal Form (2NF) 

The figure below will be used to study this normal form. 

 

The primary key for the invoice details table in the figure is the combination of InvNo 
and LineNo.  The two fields together comprise the primary key.  2nd NF deals with non-
key attributes that are not dependent on the entire primary key but rather only on part of 
it. 

The ItemID and Price Quantity are dependent on the whole primary key.  You cannot 
know the item sold or its quantity price break without knowing the invoice and which line 
of the invoice you are interested in. 

However the CustID will remain the same for all lines on an invoice.  This means that 
CustID is dependent on the InvNo only and not ion the LineNo.  CustID is dependent on 
part of the primary key. 

To fix this we move the CustID field to another table where it is dependent on the whole 
primary key. 



75 
 

 

3rd Normal Form (3NF) 

Reduce entities in 2NF to 3NF by removing attributes that depend on other, non-key 
attributes (other than alternate keys). 

The golden rule of relational databases is, ―the key, the whole key, and nothing but the 
key‖.  The 3rd normal form deals with attributes that are codependent on the primary key 
and another, non-key, attribute.  The figure below shows a table design that violates the 
3rd normal form. 

 

With the 3rd normal form we are trying to identify non-key attributes that have a 
dependency on other non-key attributes (other than alternate keys).  In figure 13 the 
there are four non-key attributes that are all dependent on the primary key, that is to 
know the VendorID, VendorCity, Date, or Terms of a purchase order you must know 
which purchase order you are looking at.  However the VendorCity is also dependent on 
the VendorID for its value.  That is if you change the VendorID on a purchase order the 
VendorCity will also need to change. 



76 
 

The solution for this example is shown in below. 

 

We have moved the VendorCity out of the purchase order table and put it in the Vendor 
table where the VendorID is the primary key. 

Perhaps you have heard someone say that it is not a good design, in a relational 
database, to store the results of a calculation in a table.  Why not?  What rule does this 
break?  It violates 3rd normal form. 

If I have a table for invoice detail lines and it has a UnitPrice field, a quantity field, and a 
TotalPrice field (which is calculated by multiplying the UnitPrice by the Quantity) then I 
have at least one field that is codependent, the TotalPrice field.  The TotalPrice for a 
line is dependent on the line number, but it is also dependent on both the UnitPrice and 
the Quantity.   If either UnitPrice or Quantity changes then the TotalPrice will also need 
to change. 

Y)   Is 3rd Normal Form good enough? 

I have often heard people say that 3rd normal form is good enough; perhaps you have 
too.  Is this true?  Is 3rd normal form good enough?  Well, I would have to ask that if 
3rd normal form was as far as it is necessary to go with normalization then why are there 
three more normal forms after 3rd? 

n truth, the next three normal forms only apply in certain specific situations and if none 
of those situations exist in the data design, then 3rd normal form is 5th normal form an 
fully normalized. 

Z)   Boyce-Codd Normal Form (BCNF) 

Reduce entities in 3NF to BCNF by ensuring that they are in 3NF for any feasible choice 
of candidate key as primary key. 



77 
 

The next normal form is named after the two people who first described it, Boyce and 
Codd.  This normal form is only required for tables that have more than one candidate 
for the primary key.  The rule is simple; if the table is in 3rd normal form for the primary 
key being used, insure that it is also in 3rd normal form for any of the alternate keys as 
well. 

Imagine an employee table that has attributes for Social Security Number, Employee 
Clock Number, and Employee ID (a surrogate primary key).  3rd normal form would 
apply the first three rules using the Employee ID as the primary key.  Boyce-Codd 
normal form would go back and apply the first three rules using the Social Security 
Number and then using the Employee Clock Number as the primary key.  When the 
table structure is in 3rd normal form no matter which candidate for primary key is used, 
then it is in Boyce-Codd normal form. 

4th Normal Form (4NF) 

Reduce entities in BCNF to 4NF by removing any independently multi-valued 
components of the primary key to multiple new parent entities. 

4th normal form is only applicable when the primary key is comprised of two or more 
attributes.  With a primary key of only one attribute there is no need to check 4th normal 
form.  4th and 5th normal forms resolve problems within the primary key itself. 

In figure 15 we have a design that is meant to record and track employees, their skills, 
and their objectives.  The primary key for the table is the combination of the Employee 
ID, the Skill ID, and the Objective ID.  The problem with this design is the independence 
of the skill and objective attributes comprising the primary key. 

 

To really understand the nature of the problem, let‘s consider some data from this table: 

EmpID Skill Objective 

Jones Accounting More Money 

Jones Accounting Master‘s Degree 



78 
 

Jones Public Speaking More Money 

Jones Public Speaking Master‘s Degree 

Looking at the sample data, what would need to happen if Jones was to tell you he had 
an objective of getting a doctorate degree too?  How many record would you need to ad 
for that change?  What if he received his Masters Degree?  Again how many records 
would need to change?  Both situations require that more than one record change in 
order to record the change in the data. 

Below is shown the same information being recorded, but the design is in 4th normal 
form.  Any of the events asked about in the previous paragraph will only involve one 
record in the new design. 

 

5th Normal Form (5NF) 

Reduce entities in 4NF to 5NF by removing pair-wise cyclic dependencies (appearing 
within composite primary keys with three or more component attributes) to three or 
more new parent entities. 

The 5th normal form is another one that is only required when the primary key has more 
than one attribute.  In fact, with 5th normal form the primary key must use three or more 
attributes. 

Reading the definition for this normal form can be stress inducing for sure.  If you take it 
apart and understand each piece separately it really isn‘t that complex.  The definition 
refers to pair-wise cyclic dependencies.  Pair-wise means taking two attributes at a time, 
dependencies is referring to the value of one attribute being dependent on the value of 
another.  The cyclic is simply saying that in a primary key of three attributes you need 
the value of the other two to determine the value of any one of them.  The figure below 
shows an example of a 5th normal form problem. 



79 
 

 

This design is to record information about a retail buying operation.  The requirement is 
to track the buyers, from whom do they buy, and what do they buy.  The table design 
has the combination of Buyer, Vendor, and Item as the primary key. 

If you analyze the relationship between the components of the primary key in this 
design you will realize that if you want to know the buyer, you must first determine the 
vendor and item.  If you want to know the vendor, you need the buyer and item.  Finally 
if you want the item, you must know the vendor and buyer.  Notice the pair wise (you 
always need to know two) cyclic (no matter which one you need it is the other two that it 
depends on) dependency. 

To appreciate the nature of the difficulty having a table that is in violation of 5th normal 
form will present to you, consider the following sample data. 

Buyer Vendor Item 

Mary Jordache Jeans 

Mary Jordache Sneakers 

Sally Jordache Jeans 

Mary Liz Claiborne Blouses 

Sally Liz Claiborne Blouses 

Like 4th normal form, the major problem areas with 5th normal form have to do with data 
updates.  For example, if Liz Claiborne were to introduce a new line of Jeans, how 
many records would need to be added to this table to reflect that change?  Two, since 
both Mary and Sally buy from Claiborne and both Mary and Sally buy Jeans.  What if 
Jordache dropped their line of jeans?  Again, two records need to be modified (actually 
deleted) to reflect this change. 

Below is the design reduced to the 5th normal form. 



80 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 
 

Unit - IV 

 

SQL 

SQL Constructs 

SQL Tutorial of w3resource aims to meet the need of a beginner to learn SQL without 

any prior experience. Having said that, it by no means superficial. On the contrary, it 

offers all the material one needs to successfully build a database and write SQL queries 

ranging from a one liner like "SELECT * FROM table_name" to fairly non-trivial ones 

taking multiple tables in the account. 

 

At the outset, we need to tell you, this SQL Tutorial adheres to SQL:2003 standard of 

ANSI. This is important because if you are learning something as important as SQL, 

there is no point learning if you don't know which version or standard you are studying. 

We have diligently added as many features as possible while creating this SQL Tutorial. 

There is Syntax, Query, Explanation of a query and pictorial presentation to help you 

understand concepts better. On top of these, we have hundreds of Exercises with an 

online editor, quizzes. So you may practice concepts and queries without leaving your 

browser. 

 

 

Contents: 

 Introduction 

 What is SQL? 

 History of SQL 

 SQL Standard Revisions 

 Constructs of SQL 

 Some Key terms of SQL 2003 

 Database and Table Manipulation 

 Tutorial objectives 

 Summary 

 

 

https://www.w3resource.com/sql-exercises
https://w3resource.com/w3skills/sql-beginner/
https://www.w3resource.com/sql/tutorials.php#INTRODUC
https://www.w3resource.com/sql/tutorials.php#SQL
https://www.w3resource.com/sql/tutorials.php#HISTSQL
https://www.w3resource.com/sql/tutorials.php#SQLSTANDARD
https://www.w3resource.com/sql/tutorials.php#SQLCONS
https://www.w3resource.com/sql/tutorials.php#SQLKEYTERMS
https://www.w3resource.com/sql/tutorials.php#SQLDBASE
https://www.w3resource.com/sql/tutorials.php#SQLOBJ
https://www.w3resource.com/sql/tutorials.php#SQLSUMMARY


82 
 

Introduction 

In June 1970 Dr. E. F. Codd published the paper, "A Relational Model of Data for Large 

Shared Data Banks" in the Association of Computer Machinery (ACM) journal. Codd's 

model is now accepted as the definitive model for relational database management 

systems (RDBMS). 

 

Using Codd's model the language, Structured English Query Language (SEQUEL) was 

developed by IBM Corporation in San Jose Research Center. The language was first 

called SEQUEL but Official pronunciation of SQL is ESS QUE ELL. 

 

In 1979 Oracle introduced the first commercially available implementation of SQL. Later 

other players join in the race. Today, SQL is accepted as the standard RDBMS 

language. 

Note: If you are not habituated with database management system your can learn 

from here. 

What is SQL? 

SQL stands for Structured Query Language and it is an ANSI (American National 

Standards Institute) standard computer language for accessing and manipulating 

database systems. It is used for managing data in relational database management 

system which stores data in the form of tables and relationship between data is also 

stored in the form of tables. SQL statements are used to retrieve and update data in a 

database. 

 

SQL works with database programs like DB2, MySQL, PostgreSQL, Oracle, SQLite, 

SQL Server, Sybase, MS Access and much more. There are many different versions of 

the SQL language, but to be in compliance with the ANSI standard, they support the 

major keyword such as SELECT, UPDATE, DELETE, INSERT, WHERE, and others. 

The following picture shows the communicating with an RDBMS using SQL. 

https://www.w3resource.com/slides/database-management-system.php
https://www.w3resource.com/mysql/mysql-tutorials.php
https://w3resource.com/PostgreSQL/tutorial.php
https://www.w3resource.com/oracle/index.php
https://www.w3resource.com/sqlite/


83 
 

 
 

History of SQL 

Here is the year wise development history : 

 1970 E.F. Codd publishes Definition of Relational Model 

 1975 Initial version of SQL Implemented (D. Chamberlin) 

 IBM experimental version: System R (1977) w/revised SQL 

 IBM commercial versions: SQL/DS and DB2 (the early 1980s) 

 Oracle introduces commercial version before IBM's SQL/DS 

 INGRES 1981 & 85 

 ShareBase 1982 & 86 

https://www.w3resource.com/sql/sql-basic/codd-12-rule-relation.php


84 
 

 Data General (1984) 

 Sybase (1986) 

 by 1992 over 100 SQL products 

SQL Standard Revisions 

 SEQUEL/Original SQL - 1974 

 SQL/86 - Ratification and acceptance of a formal SQL standard by ANSI 

(American National Standards Institute) and ISO (International Standards 

Organization). 

 SQL/92 - Major revision (ISO 9075), Entry Level SQL-92 adopted as FIPS 127-2. 

 SQL/99 - Added regular expression matching, recursive queries (e.g. transitive 

closure), triggers, support for procedural and control-of-flow statements, non-

scalar types, and some object-oriented features (e.g. structured types). 

 SQL/2003 - Introduced XML-related features (SQL/XML), Window functions, 

Auto generation. 

 SQL/2006 - Lots of XML Support for XQuery, an XML-SQL interface standard. 

 SQL/2008 - Adds INSTEAD OF triggers, TRUNCATE statement. 

Constructs of SQL 

Here is list of the key elements of SQL along with a brief description: 

 Queries : Retrieves data against some criteria. 

 Statements : Controls transactions, program flow, connections, sessions, or 

diagnostics. 

 Clauses : Components of Queries and Statements. 

 Expressions : Combination of symbols and operators and a key part of the SQL 

statements. 

 Predicates : Specifies conditions. 

Some Key terms of SQL 2003 



85 
 

To know the key terms of SQL 2003, you should know the statement classes of both 

SQL 92 AND SQL 2003, since both are used to refer SQL features and statements. 

In SQL 92, SQL statements are grouped into following categories: 

 Data manipulation : The Data Manipulation Language (DML) is the subset of 

SQL which is used to add, update and delete data. 

 Data definition : The Data Definition Language (DDL) is used to manage table 

and index structure. CREATE, ALTER, RENAME, DROP and TRUNCATE 

statements are to name a few data definition elements. 

 Data control : The Data Control Language (DCL) is used to set permissions to 

users and groups of users whether they can access and manipulate data. 

 Transaction : A transaction contains a number of SQL statements. After the 

transaction begins, all of the SQL statements are executed and at the end of the 

transaction, permanent changes are made in the associated tables. 

 Procedure : Using a stored procedure, a method is created which contains 

source code for performing repetitive tasks. 

In SQL 2003 statements are grouped into seven categories which are called classes. 

See the following table : 

 

Class Example 

SQL data statements SELECT, INSERT, UPDATE, DELETE 

SQL connection statements CONNECT, DISCONNECT 

SQL schema statements ALTER, CREATE, DROP 

SQL control statements CALL, RETURN 



86 
 

SQL diagnostic statements GET DIAGNOSTICS 

SQL session statements SET CONSTRAINT 

SQL transaction statements COMMIT, ROLLBACK 

 

PL-SQL, TSQL and PL/pgSQL 

 PL/SQL - Procedural Language/Structured Query Language ( PL/SQL) is Oracle 

Corporation's procedural extension language for SQL and the Oracle relational 

database. 

 TSQL - Transact-SQL (T-SQL) is Microsoft's and Sybase's proprietary extension 

to SQL. 

 PL/pgSQL - Procedural Language/PostgreSQL(PL/pgSQL) is a procedural 

programming language supported by the PostgreSQL. 

Database and Table Manipulation 

 

Command Description 

CREATE DATABASE database_name Create a database 

DROP DATABASE database_name Delete a database 

CREATE TABLE "table_name" ("column_1" 

"column_1_data_type", "column_2" "column_2_data_type", ... ) 

Create a table in a 

database. 

ALTER TABLE table_name ADD column_name Add columns in an 



87 
 

column_datatype existing table. 

ALTER TABLE table_name DDROP column_name 

column_datatype 

Delete columns in an 

existing table. 

DROP TABLE table_name Delete a table. 

Data Types: 

Data Type Description 

CHARACTER(n) Character string, fixed length n. 

CHARACTER 

VARYING(n) or 

VARCHAR(n) 

Variable length character string, maximum length n. 

BINARY(n) Fixed-length binary string, maximum length n. 

BOOLEAN Stores truth values - either TRUE or FALSE. 

BINARY VARYING(n) or 

VARBINARY(n) 

Variable length binary string, maximum length n. 

INTEGER(p) Integer numerical, precision p. 

SMALLINT Integer numerical precision 5. 



88 
 

INTEGER Integer numerical, precision 10. 

BIGINT Integer numerical, precision 19. 

DECIMAL(p, s) Exact numerical, precision p, scale s. 

NUMERIC(p, s) Exact numerical, 

precision p, scale s. 

(Same as DECIMAL ). 

FLOAT(p) Approximate numerical, mantissa precision p. 

REAL Approximate numerical 

mantissa precision 7. 

FLOAT Approximate numerical 

mantissa precision 16. 

DOUBLE PRECISION Approximate numerical 

mantissa precision 16. 

DATE 

TIME 

TIMESTAMP 

Composed of a number of integer fields, representing an 

absolute point in time, depending on sub-type. 

INTERVAL Composed of a number of integer fields, representing a 

period of time, depending on the type of interval. 

COLLECTION  (ARRAY, ARRAY(offered in SQL99) is a set-length and ordered the 



89 
 

MULTISET) collection of elements. 

XML Stores XML data. It can be used wherever a SQL data type 

is allowed, such as a column of a table. 

Index Manipulation: 

Command Description 

CREATE INDEX index_name ON table_name (column_name_1, 

column_name_2, ...) 

Create a simple 

index. 

CREATE UNIQUE INDEX index_name ON table_name 

(column_name_1, column_name_2, ...) 

Create a unique 

index. 

DROP INDEX table_name.index_name Drop a index. 

SQL Operators: 

Operators Description 

SQL 

Arithmetic 

Operator 

Arithmetic operators are addition(+), subtraction(-), multiplication(*) and 

division(/). The + and - operators can also be used in date arithmetic. 

SQL 

Comparison 

A comparison (or relational) operator is a mathematical symbol which 



90 
 

Operator is used to compare two values. 

SQL 

Assignment 

operator 

In SQL the assignment operator ( = ) assigns a value to a variable or of 

a column or field of a table. 

SQL Bitwise 

Operator 

The bitwise operators are & ( Bitwise AND ), | ( Bitwise OR ) and ^ ( 

Bitwise Exclusive OR or XOR ). The valid datatypes for bitwise 

operators are BINARY, BIT, INT, SMALLINT, TINYINT, and 

VARBINARY. 

SQL Logical 

Operator 

The Logical operators are those that are true or false. The logical 

operators are AND , OR, NOT, IN, BETWEEN, ANY, ALL, SOME, 

EXISTS, and LIKE. 

SQL Unary 

Operator 

The SQL Unary operators perform such an operation which contain 

only one expression of any of the datatypes in the numeric datatype 

category. 

Insert, Update and Delete: 

Command Description 

INSERT INTO table_name VALUES (value_1, 

value_2,....) 

INSERT INTO table_name (column1, column2,...) 

VALUES (value_1, value_2,....) 

Insert new rows into a 

table. 

UPDATE table_name SET column_name_1 = 

new_value_1, column_name_2 = new_value_2 WHERE 

Update one or several 

columns in rows. 



91 
 

column_name = some_value 

DELETE FROM table_name WHERE column_name = 

some_value 

Delete rows in a table. 

Select: 

Command Description 

SELECT column_name(s) FROM 

table_name 

Select data from a table. 

SELECT * FROM table_name Select all data from a table. 

SELECT DISTINCT column_name(s) 

FROM table_name 

Select only distinct (different) data from a 

table. 

SELECT column_name(s) FROM 

table_name WHERE column operator 

value AND column operator value OR 

column operator value AND (... OR ...) 

... 

Select only certain data from a table. 

SELECT column_name(s) FROM 

table_name WHERE column_name IN 

(value1, value2, ...) 

The IN operator may be used if you know the 

exact value you want to return for at least one 

of the columns. 

SELECT column_name(s) FROM 

table_name ORDER BY row_1, row_2 

DESC, row_3 ASC, ... 

Select data from a table with sort the rows. 



92 
 

SELECT column_1, ..., 

SUM(group_column_name) FROM 

table_name GROUP BY 

group_column_name 

The GROUP BY clause is used with the 

SELECT statement to make a group of rows 

based on the values of a specific column or 

expression. The SQL AGGREGATE function 

can be used to get summary information for 

every group and these are applied to 

individual group. 

SELECT column_name(s) INTO 

new_table_name FROM 

source_table_name WHERE query 

Select data from table(S) and insert it into 

another table. 

SELECT column_name(s) IN 

external_database_name FROM 

source_table_name WHERE query 

Select data from table(S) and insert it in 

another database. 

Functions: 

SQL 

functions 

Description 

Aggregate 

Function 

This function can produce a single value for an entire group or table. 

Some Aggregate functions are - 

 SQL Count function 

 SQL Sum function 

 SQL Avg function 

 SQL Max function 

 SQL Min function 

Arithmetic 

Function 

A mathematical function executes a mathematical operation usually 

based on input values that are provided as arguments, and return a 

numeric value as the result of the operation. 



93 
 

Some Arithmetic functions are - 

 abs() 

 ceil() 

 floor() 

 exp() 

 ln() 

 mod() 

 power() 

 sqrt() 

Character 

Function 

A character or string function is a function which takes one or more 

characters or numbers as parameters and returns a character value. 

Some Character functions are - 

 lower() 

 upper() 

 trim() 

 translate() 

Joins: 

Name Description 

SQL 

EQUI 

JOIN 

The SQL EQUI JOIN is a simple SQL join uses the equal sign(=) as the 

comparison operator for the condition. It has two types - SQL Outer join 

and SQL Inner join. 

SQL INNER JOIN returns all rows from tables where the key record of one 

table is equal to the key records of another table. 

SQL OUTER JOIN returns all rows from one table and only those rows 

from the secondary table where the joined condition is satisfying i.e. the 

columns are equal in both tables. 



94 
 

SQL NON 

EQUI 

JOIN 

The SQL NON EQUI JOIN is a join uses comparison operator other than 

the equal sign like >, <, >=, <= with the condition. 

Union: 

Command Description 

SQL_Statement_1 UNION 

SQL_Statement_2 

Select all different values from SQL_Statement_1 

and SQL_Statement_2 

SQL_Statement_1 UNION ALL 

SQL_Statement_2 

Select all values from SQL_Statement_1 and 

SQL_Statement_2 

View: 

Command Description 

CREATE VIEW view_name AS SELECT 

column_name(s) FROM table_name WHERE 

condition 

Create a virtual table based on the 

result-set of a SELECT statement. 

Tutorial objectives 

SQL tutorial of w3resource is a comprehensive tutorial to learn SQL. We have followed 

SQL:2003 standard of ANSI. There are hundreds of examples given in this tutorial. 

Output are shown with Oracle 10G/MySQL. Often outputs are followed by a pictorial 



95 
 

presentation and explanation for better understanding. You will hardly find a vendor 

neutral SQL tutorial covering SQL in such great detail. Following is a list of the features 

we have included in our tutorials : 

 A simple but thorough description. 

 SQL Syntax. 

 Description of the Parameters used in the SQL command. 

 Sample table with data. 

 SQL command. 

 Explanation of the SQL command. 

 The output of the SQL command. 

 Model database. 

 Online practice. 

 

Summary 

 SQL stands for Structured Query Language. 

 SQL is easy to learn. 

 SQL is an ANSI standard computer language. 

 SQL allows us to access a database. 

 SQL use to access and manipulate data in various databases like Oracle, 

Sybase, Microsoft SQL Server, DB2, Access, MySQL, PostgreSQL and other 

database systems. 

 SQL execute queries against a database. 

 SQL can insert new records into a database. 

 SQL can update records in a database. 

 SQL can delete records from a database. 



96 
 

Practice SQL Exercises 

 SQL Exercises, Practice, Solution 

 SQL Retrieve data from tables [33 Exercises] 

 SQL Boolean and Relational operators [12 Exercises] 

 SQL Wildcard and Special operators [22 Exercises] 

 SQL Aggregate Functions [25 Exercises] 

 SQL Formatting query output [10 Exercises] 

 SQL Quering on Multiple Tables [7 Exercises] 

 FILTERING and SORTING on HR Database [38 Exercises] 

 SQL JOINS 

o SQL JOINS [29 Exercises] 

o SQL JOINS on HR Database [27 Exercises] 

 SQL SUBQUERIES 

o SQL SUBQUERIES [39 Exercises] 

o SQL SUBQUERIES on HR Database [55 Exercises] 

 SQL Union[9 Exercises] 

 SQL View[16 Exercises] 

 SQL User Account Management [16 Exercise] 

 Movie Database 

o BASIC queries on movie Database [10 Exercises] 

o SUBQUERIES on movie Database [16 Exercises] 

o JOINS on movie Database [24 Exercises] 

 Soccer Database 

o Introduction 

o BASIC queries on soccer Database [29 Exercises] 

https://www.w3resource.com/sql-exercises/index.php
https://www.w3resource.com/sql-exercises/sql-retrieve-from-table.php
https://www.w3resource.com/sql-exercises/sql-boolean-operators.php
https://www.w3resource.com/sql-exercises/sql-wildcard-special-operators.php
https://www.w3resource.com/sql-exercises/sql-aggregate-functions.php
https://www.w3resource.com/sql-exercises/sql-fromatting-output-exercises.php
https://www.w3resource.com/sql/s/sql-exercises/ql-exercises-quering-on-multiple-table.php
https://www.w3resource.com/sql-exercises/sorting-and-filtering-hr/index.php
https://www.w3resource.com/sql-exercises/sql-joins-exercises.php
https://www.w3resource.com/sql-exercises/joins-hr/index.php
https://www.w3resource.com/sql-exercises/subqueries/index.php
https://www.w3resource.com/sql-exercises/sql-subqueries-exercises.php
https://www.w3resource.com/sql-exercises/union/sql-union.php
https://www.w3resource.com/sql-exercises/view/sql-view.php
https://www.w3resource.com/sql-exercises/sql-user-management.php
https://www.w3resource.com/sql-exercises/movie-database-exercise/basic-exercises-on-movie-database.php
https://www.w3resource.com/sql-exercises/movie-database-exercise/subqueries-exercises-on-movie-database.php
https://www.w3resource.com/sql-exercises/movie-database-exercise/joins-exercises-on-movie-database.php
https://www.w3resource.com/sql-exercises/soccer-database-exercise/index.php
https://www.w3resource.com/sql-exercises/soccer-database-exercise/basic-exercises-on-soccer-database.php


97 
 

o SUBQUERIES on soccer Database [33 Exercises] 

o JOINS queries on soccer Database [61 Exercises] 

 Hospital Database 

o Introduction 

o BASIC, SUBQUERIES, and JOINS [39 Exercises] 

 Employee Database 

o BASIC queries on employee Database [115 Exercises] 

o SUBQUERIES on employee Database [77 Exercises] 

 More to come! 

 

 

 

 

 

SQL Join 

A SQL Join statement is used to combine data or rows from two or more tables based on 
a common field between them. Different types of Joins are: 
 

 INNER JOIN 
 

 LEFT JOIN 
 

 RIGHT JOIN 
 

 FULL JOIN 
 

Consider the two tables below: 

Student 
 

https://www.w3resource.com/sql-exercises/soccer-database-exercise/subqueries-exercises-on-soccer-database.php
https://www.w3resource.com/sql-exercises/soccer-database-exercise/joins-exercises-on-soccer-database.php
https://www.w3resource.com/sql-exercises/hospital-database-exercise/index.php
https://www.w3resource.com/sql-exercises/hospital-database-exercise/sql-exercise-on-hospital-database.php
https://www.w3resource.com/sql-exercises/employee-database-exercise/index.php
https://www.w3resource.com/sql-exercises/employee-database-exercise/subqueries-exercises-on-employee-database.php


98 
 

 
 

StudentCourse 
 



99 
 

 
  

The simplest Join is INNER JOIN. 

1. INNER JOIN: The INNER JOIN keyword selects all rows from both the tables as 
long as the condition satisfies. This keyword will create the result-set by combining 
all rows from both the tables where the condition satisfies i.e value of the common 
field will be same. 
 
Syntax: 
 

SELECT table1.column1,table1.column2,table2.column1,.... 

FROM table1  

INNER JOIN table2 

ON table1.matching_column = table2.matching_column; 

 

 

table1: First table. 

table2: Second table 

matching_column: Column common to both the tables. 



100 
 

Note: We can also write JOIN instead of INNER JOIN. JOIN is same as INNER 
JOIN. 
 

 

 
Example Queries(INNER JOIN) 

 This query will show the names and age of students enrolled in different 
courses. 
 

 SELECT StudentCourse.COURSE_ID, Student.NAME, Student.AGE FROM 
Student 

 INNER JOIN StudentCourse 

 ON Student.ROLL_NO = StudentCourse.ROLL_NO;  
 

Output: 
 

2. LEFT JOIN: This join returns all the rows of the table on the left side of the join 
and matching rows for the table on the right side of join. The rows for which there 
is no matching row on right side, the result-set will contain null. LEFT JOIN is 
also known as LEFT OUTER JOIN.Syntax: 
 

3. SELECT table1.column1,table1.column2,table2.column1,.... 

4. FROM table1  

5. LEFT JOIN table2 



101 
 

6. ON table1.matching_column = table2.matching_column; 

7.  

8.  

9. table1: First table. 

10. table2: Second table 

11. matching_column: Column common to both the tables. 

 
Note: We can also use LEFT OUTER JOIN instead of LEFT JOIN, both are same. 
 
 

 
 
 

Example Queries(LEFT JOIN): 
 

SELECT Student.NAME,StudentCourse.COURSE_ID  

FROM Student 

LEFT JOIN StudentCourse  

ON StudentCourse.ROLL_NO = Student.ROLL_NO; 

 
 
 
Output: 
 

https://i.stack.imgur.com/VkAT5.png


102 
 

 
 

12. RIGHT JOIN: RIGHT JOIN is similar to LEFT JOIN. This join returns all the rows of 
the table on the right side of the join and matching rows for the table on the left side 
of join. The rows for which there is no matching row on left side, the result-set will 
contain null. RIGHT JOIN is also known as RIGHT OUTER JOIN.Syntax: 
 

13. SELECT table1.column1,table1.column2,table2.column1,.... 

14. FROM table1  

15. RIGHT JOIN table2 

16. ON table1.matching_column = table2.matching_column; 

17.  

18.  

19. table1: First table. 

20. table2: Second table 

21. matching_column: Column common to both the tables. 

Note: We can also use RIGHT OUTER JOIN instead of RIGHT JOIN, both are 
same. 
 



103 
 

 
 

Example Queries(RIGHT JOIN): 
 

SELECT Student.NAME,StudentCourse.COURSE_ID  

FROM Student 

RIGHT JOIN StudentCourse  

ON StudentCourse.ROLL_NO = Student.ROLL_NO; 

Output: 
 

 



104 
 

22. FULL JOIN: FULL JOIN creates the result-set by combining result of both LEFT 
JOIN and RIGHT JOIN. The result-set will contain all the rows from both the tables. 
The rows for which there is no matching, the result-set will 
contain NULL values.Syntax: 
 

23. SELECT table1.column1,table1.column2,table2.column1,.... 

24. FROM table1  

25. FULL JOIN table2 

26. ON table1.matching_column = table2.matching_column; 

27.  

28.  

29. table1: First table. 

30. table2: Second table 

31. matching_column: Column common to both the tables. 

 

 

 

 
Example Queries(FULL JOIN): 

 
SELECT Student.NAME,StudentCourse.COURSE_ID  

FROM Student 

FULL JOIN StudentCourse  

ON StudentCourse.ROLL_NO = Student.ROLL_NO; 



105 
 

Output: 
 

 
 

 

Multiple Table Queries 

It‘s sometimes difficult to know which SQL syntax to use when combining data that 
spans multiple tables. I‘ll discuss some of the more frequently used methods for 
consolidating queries on multiple tables into a single statement. 
 
SQL syntax 
 
If you need a refresher on SQL syntax, read these articles: 
"SQL Basics I: Data queries" covers database terminology and the four basic query 
types. 
"SQL basics: SELECT statement options" covers the SELECT statement in detail and 
explains aggregate functions. 

 

https://www.techrepublic.com/article.jhtml?id=u00320020531dol01.htm
https://www.techrepublic.com/article.jhtml?id=u00320020628dol01.htm


106 
 

 
The sample queries in this article adhere to the SQL92 ISO standard. Not all database 
manufacturers follow this standard, and many have made enhancements that can yield 
unexpected results. If you‘re uncertain about support for these concepts in your 
database, please refer to your manufacturer‘s documentation. 
 
SELECT 
 
A simple SELECT statement is the most basic way to query multiple tables. You can 
call more than one table in the FROM clause to combine results from multiple tables. 
Here‘s an example of how this works: 
SELECT table1.column1, table2.column2 FROM table1, table2 WHERE table1.column1 
= table2.column1; 
 
In this example, I used dot notation (table1.column1) to specify which table the column 
came from. If the column in question only appears in one of the referenced tables, you 
don‘t need to include the fully qualified name, but it may be useful to do so for 
readability. 
 
Tables are separated in the FROM clause by commas. You can include as many tables 
as needed, although some databases have a limit to what they can efficiently handle 
before introducing a formal JOIN statement, which is described below. 
 
This syntax is, in effect, a simple INNER JOIN. Some databases treat it exactly the 
same as an explicit JOIN. The WHERE clause tells the database which fields to 
correlate, and it returns results as if the tables listed were combined into a single table 
based on the provided conditions. It‘s worth noting that your conditions for comparison 
don‘t have to be the same columns you return as your result set. In the example 
above, table1.column1 and table2.column1 are used to combine the tables, 
but table2.column2 is returned. 
 
You can extend this functionality to more than two tables using AND keywords in the 
WHERE clause. You can also use such a combination of tables to restrict your results 
without actually returning columns from every table. In the example below, table3 is 
matched up with table1, but I haven‘t returned anything from table3 for display. I‘ve 
merely checked to make sure the relevant column from table1 exists in table3. Note 
that table3 needs to be referenced in the FROM clause for this example. 
SELECT table1.column1, table2.column2 FROM table1, table2, table3 WHERE 
table1.column1 = table2.column1 AND table1.column1 = table3.column1; 
 
Be warned, however, that this method of querying multiple tables is effectively an 
implied JOIN. Your database may handle things differently, depending on the 
optimization engine it uses. Also, neglecting to define the nature of the correlation with a 
WHERE clause can give you undesirable results, such as returning the rogue field in a 
column associated with every possible result from the rest of the query, as in a CROSS 
JOIN. 



107 
 

 
If you‘re comfortable with how your database handles this type of statement, and you‘re 
combining two or just a few tables, a simple SELECT statement will meet your needs. 
 
JOIN 
 
JOIN works in the same way as the SELECT statement above—it returns a result set 
with columns from different tables. The advantage of using an explicit JOIN over an 
implied one is greater control over your result set, and possibly improved performance 
when many tables are involved. 
 
There are several types of JOIN—LEFT, RIGHT, and FULL OUTER; INNER; and 
CROSS. The type you use is determined by the results you want to see. For example, 
using a LEFT OUTER JOIN will return all relevant rows from the first table listed, while 
potentially dropping rows from the second table listed if they don‘t have information that 
correlates in the first table. 
 
This differs from an INNER JOIN or an implied JOIN. An INNER JOIN will only return 
rows for which there is data in both tables. 
 
Use the following JOIN statement for the first SELECT query above: 
SELECT table1.column1, table2.column2 FROM table1 INNER JOIN table2 
ON table1.column1 = table2.column1; 
 
Subqueries 
 
Subqueries, or subselect statements, are a way to use a result set as a resource in a 
query. These are often used to limit or refine results rather than run multiple queries or 
manipulate the data in your application. With a subquery, you can reference tables to 
determine inclusion of data or, in some cases, return a column that is the result of a 
subselect. 
 
The following example uses two tables. One table actually contains the data I‘m 
interested in returning, while the other gives a comparison point to determine what data 
is actually interesting. 
 
SELECT column1 FROM table1 WHERE EXISTS ( SELECT column1 FROM table2 
WHERE table1.column1 = table2.column1 ); 
 
One important factor about subqueries is performance. Convenience comes at a price 
and, depending on the size, number, and complexity of tables and the statements you 
use, you may want to allow your application to handle processing. Each query is 
processed separately in full before being used as a resource for your primary query. If 
possible, creative use of JOIN statements may provide the same information with less 
lag time. 



108 
 

JOIN statements and subqueries 
 
For a more detailed explanation of JOINS and concepts that can be used with them, 
read the articles  "Basic and complex SQL joins made easy" and "Master joins with 
these concepts." For more information about subqueries, read "Use SQL subselects to 
consolidate queries." 
 

UNION 

 

The UNION statement is another way to return information from multiple tables with a 

single query. The UNION statement allows you to perform queries against several 

tables and return the results in a consolidated set, as in the following example. 

SELECT column1, column2, column3 FROM table1 UNION SELECT column1, 

column2, column3 FROM table2; 

 

This will return a result set with three columns containing data from both queries. By 

default, the UNION statement will omit duplicates between the tables unless the UNION 

ALL keyword is used. UNION is helpful when the returned columns from the different 

tables don‘t have columns or data that can be compared and joined, or when it prevents 

running multiple queries and appending the results in your application code. 

 

If your column names don‘t match when you use the UNION statement, use aliases to 

give your results meaningful headers: 

SELECT column1, column2 as Two, column3 as Three FROM table1 UNION SELECT 

column1, column4 as Two, column5 as Three FROM table2; 

 

As with subqueries, UNION statements can create a heavy load on your database 

server, but for occasional use they can save a lot of time. 

 

Multiple options 

When it comes to database queries, there are usually many ways to approach the same 

problem. These are some of the more frequently used methods for consolidating 

queries on multiple tables into a single statement. While some of these options may 

affect performance, practice will help you know when it‘s appropriate to use each type of 

query. 

 

 

 

https://www.techrepublic.com/article.jhtml?id=u00320020702dol01.htm
https://www.techrepublic.com/article.jhtml?id=u00320020710dol01.htm
https://www.techrepublic.com/article.jhtml?id=u00320020710dol01.htm
https://www.techrepublic.com/article.jhtml?id=u00320020703dol01.htm
https://www.techrepublic.com/article.jhtml?id=u00320020703dol01.htm


109 
 

Build-in functions 

The Python built-in functions are defined as the functions whose functionality is pre-
defined in Python. The python interpreter has several functions that are always present 
for use. These functions are known as Built-in Functions. There are several built-in 
functions in Python which are listed below: 

Python abs() Function 

The python abs() function is used to return the absolute value of a number. It takes only 
one argument, a number whose absolute value is to be returned. The argument can be 
an integer and floating-point number. If the argument is a complex number, then, abs() 
returns its magnitude. 

Python abs() Function Example 

1. #  integer number      

2. integer = -20   

3. print('Absolute value of -40 is:', abs(integer))   

4.    

5. #  floating number   

6. floating = -20.83   

7. print('Absolute value of -40.83 is:', abs(floating))   

Output: 

Absolute value of -20 is: 20 
Absolute value of -20.83 is: 20.83 

 

Python all() Function 

The python all() function accepts an iterable object (such as list, dictionary, etc.). It 
returns true if all items in passed iterable are true. Otherwise, it returns False. If the 
iterable object is empty, the all() function returns True. 

Python all() Function Example 

1. # all values true   

2. k = [1, 3, 4, 6]   

3. print(all(k))   

4.    

5. # all values false   

6. k = [0, False]   

7. print(all(k))   



110 
 

8.    

9. # one false value   

10. k = [1, 3, 7, 0]   

11. print(all(k))   

12.    

13. # one true value   

14. k = [0, False, 5]   

15. print(all(k))   

16.    

17. # empty iterable   

18. k = []   

19. print(all(k))   

Output: 

True 
False 
False 
False 
True 

 

Python bin() Function 

The python bin() function is used to return the binary representation of a specified 
integer. A result always starts with the prefix 0b. 

Python bin() Function Example 

1. x =  10   

2. y =  bin(x)   

3. print (y)   

Output: 

0b1010 

 

Python bool() 

The python bool() converts a value to boolean(True or False) using the standard truth 
testing procedure. 

Python bool() Example 



111 
 

1. test1 = []   

2. print(test1,'is',bool(test1))   

3. test1 = [0]   

4. print(test1,'is',bool(test1))   

5. test1 = 0.0   

6. print(test1,'is',bool(test1))   

7. test1 = None   

8. print(test1,'is',bool(test1))   

9. test1 = True   

10. print(test1,'is',bool(test1))   

11. test1 = 'Easy string'   

12. print(test1,'is',bool(test1))   

Output: 

[] is False 
[0] is True 
0.0 is False 
None is False 
True is True 
Easy string is True 

 

Python bytes() 

The python bytes() in Python is used for returning a bytes object. It is an immutable 
version of the bytearray() function. 

It can create empty bytes object of the specified size. 

Python bytes() Example 

1. string = "Hello World."   

2. array = bytes(string, 'utf-8')   

3. print(array)   

Output: 

b ' Hello World.' 

 

Python callable() Function 



112 
 

A python callable() function in Python is something that can be called. This built-in 
function checks and returns true if the object passed appears to be callable, otherwise 
false. 

Python callable() Function Example 

1. x = 8   

2. print(callable(x))   

Output: 

False 

 

Python compile() Function 

The python compile() function takes source code as input and returns a code object 
which can later be executed by exec() function. 

Python compile() Function Example 

1. # compile string source to code   

2. code_str = 'x=5\ny=10\nprint("sum =",x+y)'   

3. code = compile(code_str, 'sum.py', 'exec')   

4. print(type(code))   

5. exec(code)   

6. exec(x)   

Output: 

<class 'code'> 
sum = 15 

 

Python exec() Function 

The python exec() function is used for the dynamic execution of Python program which 
can either be a string or object code and it accepts large blocks of code, unlike the 
eval() function which only accepts a single expression. 

Python exec() Function Example 

1. x = 8   

2. exec('print(x==8)')   

3. exec('print(x+4)')   



113 
 

Output: 

True 
12 

 

Python sum() Function 

As the name says, python sum() function is used to get the sum of numbers of an 
iterable, i.e., list. 

Python sum() Function Example 

1. s = sum([1, 2,4 ])   

2. print(s)   

3.    

4. s = sum([1, 2, 4], 10)   

5. print(s)   

Output: 

7 
17 

 

Python any() Function 

The python any() function returns true if any item in an iterable is true. Otherwise, it 
returns False. 

Python any() Function Example 

1. l = [4, 3, 2, 0]                               

2. print(any(l))                                    

3.    

4. l = [0, False]   

5. print(any(l))   

6.    

7. l = [0, False, 5]   

8. print(any(l))   

9.    

10. l = []   

11. print(any(l))   

Output: 



114 
 

True 
False 
True 
False 

 

Python ascii() Function 

The python ascii() function returns a string containing a printable representation of an 
object and escapes the non-ASCII characters in the string using \x, \u or \U escapes. 

Python ascii() Function Example 

1. normalText = 'Python is interesting'   

2. print(ascii(normalText))   

3.    

4. otherText = 'Pythön is interesting'   

5. print(ascii(otherText))   

6.    

7. print('Pyth\xf6n is interesting')   

Output: 

'Python is interesting' 
'Pyth\xf6n is interesting' 
Pythön is interesting 

 

Python bytearray() 

The python bytearray() returns a bytearray object and can convert objects into 
bytearray objects, or create an empty bytearray object of the specified size. 

Python bytearray() Example 

1. string = "Python is a programming language."   

2.    

3. # string with encoding 'utf-8'   

4. arr = bytearray(string, 'utf-8')   

5. print(arr)   

Output: 

bytearray(b'Python is a programming language.') 

 



115 
 

Python eval() Function 

The python eval() function parses the expression passed to it and runs python 
expression(code) within the program. 

Python eval() Function Example 

1. x = 8   

2. print(eval('x + 1'))   

Output: 

9 

 

Python float() 

The python float() function returns a floating-point number from a number or string. 

Python float() Example 

1. # for integers   

2. print(float(9))   

3.    

4. # for floats   

5. print(float(8.19))   

6.    

7. # for string floats   

8. print(float("-24.27"))   

9.    

10. # for string floats with whitespaces   

11. print(float("     -17.19\n"))   

12.    

13. # string float error   

14. print(float("xyz"))   

Output: 

9.0 
8.19 
-24.27 
-17.19 
ValueError: could not convert string to float: 'xyz' 

 



116 
 

Python format() Function 

The python format() function returns a formatted representation of the given value. 

Python format() Function Example 

1. # d, f and b are a type   

2.    

3. # integer   

4. print(format(123, "d"))   

5.    

6. # float arguments   

7. print(format(123.4567898, "f"))   

8.    

9. # binary format   

10. print(format(12, "b"))   

Output: 

123 
123.456790 
1100 

 

Python frozenset() 

The python frozenset() function returns an immutable frozenset object initialized with 
elements from the given iterable. 

Python frozenset() Example 

1. # tuple of letters   

2. letters = ('m', 'r', 'o', 't', 's')   

3.    

4. fSet = frozenset(letters)   

5. print('Frozen set is:', fSet)   

6. print('Empty frozen set is:', frozenset())   

Output: 

Frozen set is: frozenset({'o', 'm', 's', 'r', 't'}) 
Empty frozen set is: frozenset() 

 

Python getattr() Function 



117 
 

The python getattr() function returns the value of a named attribute of an object. If it is 
not found, it returns the default value. 

Python getattr() Function Example 

1. class Details:   

2.     age = 22   

3.     name = "Phill"   

4.    

5. details = Details()   

6. print('The age is:', getattr(details, "age"))   

7. print('The age is:', details.age)   

Output: 

The age is: 22 
The age is: 22 

 

Python globals() Function 

The python globals() function returns the dictionary of the current global symbol table. 

A Symbol table is defined as a data structure which contains all the necessary 
information about the program. It includes variable names, methods, classes, etc. 

Python globals() Function Example 

1. age = 22   

2.    

3. globals()['age'] = 22   

4. print('The age is:', age)   

Output: 

The age is: 22 

 

Python hasattr() Function 

The python any() function returns true if any item in an iterable is true, otherwise it 
returns False. 

Python hasattr() Function Example 



118 
 

1. l = [4, 3, 2, 0]                               

2. print(any(l))                                    

3.    

4. l = [0, False]   

5. print(any(l))   

6.    

7. l = [0, False, 5]   

8. print(any(l))   

9.    

10. l = []   

11. print(any(l))   

Output: 

True 
False 
True 
False 

 

Python iter() Function 

The python iter() function is used to return an iterator object. It creates an object which 
can be iterated one element at a time. 

Python iter() Function Example 

1. # list of numbers   

2. list = [1,2,3,4,5]   

3.    

4. listIter = iter(list)   

5.    

6. # prints '1'   

7. print(next(listIter))   

8.    

9. # prints '2'   

10. print(next(listIter))   

11.    

12. # prints '3'   

13. print(next(listIter))   

14.    

15. # prints '4'   

16. print(next(listIter))   

17.    

18. # prints '5'   



119 
 

19. print(next(listIter))   

Output: 

1 
2 
3 
4 
5 

 

Python len() Function 

The python len() function is used to return the length (the number of items) of an object. 

Python len() Function Example 

1. strA = 'Python'   

2. print(len(strA))   

Output: 

6 

Python list() 

The python list() creates a list in python. 

Python list() Example 

1. # empty list   

2. print(list())   

3.    

4. # string   

5. String = 'abcde'        

6. print(list(String))   

7.    

8. # tuple   

9. Tuple = (1,2,3,4,5)   

10. print(list(Tuple))   

11. # list   

12. List = [1,2,3,4,5]   

13. print(list(List))   

Output: 



120 
 

[] 
['a', 'b', 'c', 'd', 'e'] 
[1,2,3,4,5] 
[1,2,3,4,5] 

 

Python locals() Function 

The python locals() method updates and returns the dictionary of the current local 
symbol table. 

A Symbol table is defined as a data structure which contains all the necessary 
information about the program. It includes variable names, methods, classes, etc. 

Python locals() Function Example 

1. def localsAbsent():   

2.     return locals()   

3.    

4. def localsPresent():   

5.     present = True   

6.     return locals()   

7.    

8. print('localsNotPresent:', localsAbsent())   

9. print('localsPresent:', localsPresent())   

Output: 

localsAbsent: {} 
localsPresent: {'present': True} 

 

Python map() Function 

The python map() function is used to return a list of results after applying a given 
function to each item of an iterable(list, tuple etc.). 

Python map() Function Example 

1. def calculateAddition(n):   

2.   return n+n   

3.    

4. numbers = (1, 2, 3, 4)   

5. result = map(calculateAddition, numbers)   

6. print(result)   



121 
 

7.    

8. # converting map object to set   

9. numbersAddition = set(result)   

10. print(numbersAddition)   

Output: 

<map object at 0x7fb04a6bec18> 
{8, 2, 4, 6} 

 

Python memoryview() Function 

The python memoryview() function returns a memoryview object of the given 
argument. 

Python memoryview () Function Example 

1. #A random bytearray   

2. randomByteArray = bytearray('ABC', 'utf-8')   

3.    

4. mv = memoryview(randomByteArray)   

5.    

6. # access the memory view's zeroth index   

7. print(mv[0])   

8.    

9. # It create byte from memory view   

10. print(bytes(mv[0:2]))   

11.    

12. # It create list from memory view   

13. print(list(mv[0:3]))   

Output: 

65 
b'AB' 
[65, 66, 67] 

 

Python object() 

The python object() returns an empty object. It is a base for all the classes and holds 
the built-in properties and methods which are default for all the classes. 

Python object() Example 



122 
 

1. python = object()   

2.    

3. print(type(python))   

4. print(dir(python))   

Output: 

<class 'object'> 
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__',  
'__getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__ne__',  
'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',  
'__str__', '__subclasshook__'] 

 

Python open() Function 

The python open() function opens the file and returns a corresponding file object. 

Python open() Function Example 

1. # opens python.text file of the current directory   

2. f = open("python.txt")   

3. # specifying full path   

4. f = open("C:/Python33/README.txt")   

Output: 

Since the mode is omitted, the file is opened in 'r' mode; opens for reading. 

 

Python chr() Function 

Python chr() function is used to get a string representing a character which points to a 
Unicode code integer. For example, chr(97) returns the string 'a'. This function takes an 
integer argument and throws an error if it exceeds the specified range. The standard 
range of the argument is from 0 to 1,114,111. 

Python chr() Function Example 

1. # Calling function   

2. result = chr(102) # It returns string representation of a char   

3. result2 = chr(112)   

4. # Displaying result   

5. print(result)   

6. print(result2)   



123 
 

7. # Verify, is it string type?   

8. print("is it string type:", type(result) is str)   

Output: 

ValueError: chr() arg not in range(0x110000) 

Python complex() 

Python complex() function is used to convert numbers or string into a complex number. 
This method takes two optional parameters and returns a complex number. The first 
parameter is called a real and second as imaginary parts. 

Python complex() Example 

1. # Python complex() function example   

2. # Calling function   

3. a = complex(1) # Passing single parameter   

4. b = complex(1,2) # Passing both parameters   

5. # Displaying result   

6. print(a)   

7. print(b)   

Output: 

(1.5+0j) 
(1.5+2.2j) 

 

Python delattr() Function 

Python delattr() function is used to delete an attribute from a class. It takes two 
parameters, first is an object of the class and second is an attribute which we want to 
delete. After deleting the attribute, it no longer available in the class and throws an error 
if try to call it using the class object. 

Python delattr() Function Example 

1. class Student:   

2.     id = 101   

3.     name = "Pranshu"   

4.     email = "pranshu@abc.com"   

5. # Declaring function   

6.     def getinfo(self):   

7.         print(self.id, self.name, self.email)   



124 
 

8. s = Student()   

9. s.getinfo()   

10. delattr(Student,'course') # Removing attribute which is not available   

11. s.getinfo() # error: throws an error   

Output: 

101 Pranshu pranshu@abc.com 
AttributeError: course 
 

Python dir() Function 

Python dir() function returns the list of names in the current local scope. If the object on 
which method is called has a method named __dir__(), this method will be called and 
must return the list of attributes. It takes a single object type argument. 

Python dir() Function Example 

1. # Calling function   

2. att = dir()   

3. # Displaying result   

4. print(att)   

Output: 

['__annotations__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__',  
'__name__', '__package__', '__spec__'] 

 

Python divmod() Function 

Python divmod() function is used to get remainder and quotient of two numbers. This 
function takes two numeric arguments and returns a tuple. Both arguments are required 
and numeric 

Python divmod() Function Example 

1. # Python divmod() function example   

2. # Calling function   

3. result = divmod(10,2)   

4. # Displaying result   

5. print(result)   

Output: 



125 
 

(5, 0) 

 

Python enumerate() Function 

Python enumerate() function returns an enumerated object. It takes two parameters, 
first is a sequence of elements and the second is the start index of the sequence. We 
can get the elements in sequence either through a loop or next() method. 

Python enumerate() Function Example 

1. # Calling function   

2. result = enumerate([1,2,3])   

3. # Displaying result   

4. print(result)   

5. print(list(result))   

Output: 

<enumerate object at 0x7ff641093d80> 
[(0, 1), (1, 2), (2, 3)] 

 

Python dict() 

Python dict() function is a constructor which creates a dictionary. Python dictionary 
provides three different constructors to create a dictionary: 

o If no argument is passed, it creates an empty dictionary. 

o If a positional argument is given, a dictionary is created with the same key-value 

pairs. Otherwise, pass an iterable object. 

o If keyword arguments are given, the keyword arguments and their values are 

added to the dictionary created from the positional argument. 

Python dict() Example 

1. # Calling function   

2. result = dict() # returns an empty dictionary   

3. result2 = dict(a=1,b=2)   

4. # Displaying result   

5. print(result)   

6. print(result2)   

Output: 



126 
 

{} 
{'a': 1, 'b': 2} 

 

Python filter() Function 

Python filter() function is used to get filtered elements. This function takes two 
arguments, first is a function and the second is iterable. The filter function returns a 
sequence of those elements of iterable object for which function returns true value. 

The first argument can be none, if the function is not available and returns only 
elements that are true. 

Python filter() Function Example 

1. # Python filter() function example   

2. def filterdata(x):   

3.     if x>5:   

4.         return x   

5. # Calling function   

6. result = filter(filterdata,(1,2,6))   

7. # Displaying result   

8. print(list(result))   

Output: 

[6] 
 

Python hash() Function 

Python hash() function is used to get the hash value of an object. Python calculates the 
hash value by using the hash algorithm. The hash values are integers and used to 
compare dictionary keys during a dictionary lookup. We can hash only the types which 
are given below: 

Hashable types: * bool * int * long * float * string * Unicode * tuple * code object. 

Python hash() Function Example 

1. # Calling function   

2. result = hash(21) # integer value   

3. result2 = hash(22.2) # decimal value   

4. # Displaying result   

5. print(result)   



127 
 

6. print(result2)   

Output: 

21 
461168601842737174 
 

Python help() Function 

Python help() function is used to get help related to the object passed during the call. It 
takes an optional parameter and returns help information. If no argument is given, it 
shows the Python help console. It internally calls python's help function. 

Python help() Function Example 

1. # Calling function   

2. info = help() # No argument   

3. # Displaying result   

4. print(info)   

Output: 

Welcome to Python 3.5's help utility! 
 

Python min() Function 

Python min() function is used to get the smallest element from the collection. This 
function takes two arguments, first is a collection of elements and second is key, and 
returns the smallest element from the collection. 

Python min() Function Example 

1. # Calling function   

2. small = min(2225,325,2025) # returns smallest element   

3. small2 = min(1000.25,2025.35,5625.36,10052.50)   

4. # Displaying result   

5. print(small)   

6. print(small2)   

Output: 

325 
1000.25 



128 
 

 

Python set() Function 

In python, a set is a built-in class, and this function is a constructor of this class. It is 
used to create a new set using elements passed during the call. It takes an iterable 
object as an argument and returns a new set object. 

Python set() Function Example 

1. # Calling function   

2. result = set() # empty set   

3. result2 = set('12')   

4. result3 = set('javatpoint')   

5. # Displaying result   

6. print(result)   

7. print(result2)   

8. print(result3)   

Output: 

set() 
{'1', '2'} 
{'a', 'n', 'v', 't', 'j', 'p', 'i', 'o'} 
 

Python hex() Function 

Python hex() function is used to generate hex value of an integer argument. It takes an 
integer argument and returns an integer converted into a hexadecimal string. In case, 
we want to get a hexadecimal value of a float, then use float.hex() function. 

Python hex() Function Example 

1. # Calling function   

2. result = hex(1)    

3. # integer value   

4. result2 = hex(342)    

5. # Displaying result   

6. print(result)   

7. print(result2)   

Output: 

0x1 



129 
 

0x156 
 

Python id() Function 

Python id() function returns the identity of an object. This is an integer which is 
guaranteed to be unique. This function takes an argument as an object and returns a 
unique integer number which represents identity. Two objects with non-overlapping 
lifetimes may have the same id() value. 

 

Python id() Function Example 

1. # Calling function   

2. val = id("Javatpoint") # string object   

3. val2 = id(1200) # integer object   

4. val3 = id([25,336,95,236,92,3225]) # List object   

5. # Displaying result   

6. print(val)   

7. print(val2)   

8. print(val3)   

Output: 

139963782059696 
139963805666864 
139963781994504 
 

Python setattr() Function 

Python setattr() function is used to set a value to the object's attribute. It takes three 
arguments, i.e., an object, a string, and an arbitrary value, and returns none. It is helpful 
when we want to add a new attribute to an object and set a value to it. 

Python setattr() Function Example 

1. class Student:   

2.     id = 0   

3.     name = ""   

4.        

5.     def __init__(self, id, name):   

6.         self.id = id   

7.         self.name = name   



130 
 

8.            

9. student = Student(102,"Sohan")   

10. print(student.id)   

11. print(student.name)   

12. #print(student.email) product error   

13. setattr(student, 'email','sohan@abc.com') # adding new attribute   

14. print(student.email)   

Output: 

102 
Sohan 
sohan@abc.com 
 

Python slice() Function 

Python slice() function is used to get a slice of elements from the collection of elements. 
Python provides two overloaded slice functions. The first function takes a single 
argument while the second function takes three arguments and returns a slice object. 
This slice object can be used to get a subsection of the collection. 

Python slice() Function Example 

1. # Calling function   

2. result = slice(5) # returns slice object   

3. result2 = slice(0,5,3) # returns slice object   

4. # Displaying result   

5. print(result)   

6. print(result2)   

Output: 

slice(None, 5, None) 
slice(0, 5, 3) 
 

Python sorted() Function 

Python sorted() function is used to sort elements. By default, it sorts elements in an 
ascending order but can be sorted in descending also. It takes four arguments and 
returns a collection in sorted order. In the case of a dictionary, it sorts only keys, not 
values. 

Python sorted() Function Example 



131 
 

1. str = "javatpoint" # declaring string   

2. # Calling function   

3. sorted1 = sorted(str) # sorting string   

4. # Displaying result   

5. print(sorted1)   

Output: 

['a', 'a', 'i', 'j', 'n', 'o', 'p', 't', 't', 'v'] 
 

Python next() Function 

Python next() function is used to fetch next item from the collection. It takes two 
arguments, i.e., an iterator and a default value, and returns an element. 

This method calls on iterator and throws an error if no item is present. To avoid the 
error, we can set a default value. 

Python next() Function Example 

1. number = iter([256, 32, 82]) # Creating iterator   

2. # Calling function   

3. item = next(number)    

4. # Displaying result   

5. print(item)   

6. # second item   

7. item = next(number)   

8. print(item)   

9. # third item   

10. item = next(number)   

11. print(item)   

Output: 

256 
32 
82 
 

Python input() Function 

Python input() function is used to get an input from the user. It prompts for the user 
input and reads a line. After reading data, it converts it into a string and returns it. It 
throws an error EOFError if EOF is read. 



132 
 

Python input() Function Example 

1. # Calling function   

2. val = input("Enter a value: ")   

3. # Displaying result   

4. print("You entered:",val)   

Output: 

Enter a value: 45 
You entered: 45 
 

Python int() Function 

Python int() function is used to get an integer value. It returns an expression converted 
into an integer number. If the argument is a floating-point, the conversion truncates the 
number. If the argument is outside the integer range, then it converts the number into a 
long type. 

If the number is not a number or if a base is given, the number must be a string. 

Python int() Function Example 

1. # Calling function   

2. val = int(10) # integer value   

3. val2 = int(10.52) # float value   

4. val3 = int('10') # string value   

5. # Displaying result   

6. print("integer values :",val, val2, val3)   

Output: 

integer values : 10 10 10 
 

Python isinstance() Function 

Python isinstance() function is used to check whether the given object is an instance of 
that class. If the object belongs to the class, it returns true. Otherwise returns False. It 
also returns true if the class is a subclass. 

The isinstance() function takes two arguments, i.e., object and classinfo, and then it 
returns either True or False. 



133 
 

Python isinstance() function Example 

1. class Student:   

2.     id = 101   

3.     name = "John"   

4.     def __init__(self, id, name):   

5.         self.id=id   

6.         self.name=name   

7.    

8. student = Student(1010,"John")   

9. lst = [12,34,5,6,767]   

10. # Calling function    

11. print(isinstance(student, Student)) # isinstance of Student class   

12. print(isinstance(lst, Student))   

Output: 

True 
False 
 

Python oct() Function 

Python oct() function is used to get an octal value of an integer number. This method 
takes an argument and returns an integer converted into an octal string. It throws an 
error TypeError, if argument type is other than an integer. 

Python oct() function Example 

1. # Calling function   

2. val = oct(10)   

3. # Displaying result   

4. print("Octal value of 10:",val)   

Output: 

Octal value of 10: 0o12 
 

Python ord() Function 

The python ord() function returns an integer representing Unicode code point for the 
given Unicode character. 

Python ord() function Example 



134 
 

1. # Code point of an integer   

2. print(ord('8'))   

3.    

4. # Code point of an alphabet    

5. print(ord('R'))   

6.    

7. # Code point of a character   

8. print(ord('&'))   

Output: 

56 
82 
38 
 

Python pow() Function 

The python pow() function is used to compute the power of a number. It returns x to the 
power of y. If the third argument(z) is given, it returns x to the power of y modulus z, i.e. 
(x, y) % z. 

Python pow() function Example 

1. # positive x, positive y (x**y)   

2. print(pow(4, 2))   

3.    

4. # negative x, positive y   

5. print(pow(-4, 2))   

6.    

7. # positive x, negative y (x**-y)   

8. print(pow(4, -2))   

9.    

10. # negative x, negative y   

11. print(pow(-4, -2))   

Output: 

16 
16 
0.0625 
0.0625 
 

Python print() Function 



135 
 

The python print() function prints the given object to the screen or other standard output 
devices. 

Python print() function Example 

1. print("Python is programming language.")   

2.    

3. x = 7   

4. # Two objects passed   

5. print("x =", x)   

6.    

7. y = x   

8. # Three objects passed   

9. print('x =', x, '= y')   

Output: 

Python is programming language. 
x = 7 
x = 7 = y 
 

Python range() Function 

The python range() function returns an immutable sequence of numbers starting from 0 
by default, increments by 1 (by default) and ends at a specified number. 

Python range() function Example 

1. # empty range   

2. print(list(range(0)))   

3.    

4. # using the range(stop)   

5. print(list(range(4)))   

6.    

7. # using the range(start, stop)   

8. print(list(range(1,7 )))   

Output: 

[] 
[0, 1, 2, 3] 
[1, 2, 3, 4, 5, 6] 
 



136 
 

Python reversed() Function 

The python reversed() function returns the reversed iterator of the given sequence. 

Python reversed() function Example 

1. # for string   

2. String = 'Java'   

3. print(list(reversed(String)))   

4.    

5. # for tuple   

6. Tuple = ('J', 'a', 'v', 'a')   

7. print(list(reversed(Tuple)))   

8.    

9. # for range   

10. Range = range(8, 12)   

11. print(list(reversed(Range)))   

12.    

13. # for list   

14. List = [1, 2, 7, 5]   

15. print(list(reversed(List)))   

Output: 

['a', 'v', 'a', 'J'] 
['a', 'v', 'a', 'J'] 
[11, 10, 9, 8] 
[5, 7, 2, 1] 
 

Python round() Function 

The python round() function rounds off the digits of a number and returns the floating 
point number. 

Python round() Function Example 

1. #  for integers   

2. print(round(10))   

3.    

4. #  for floating point   

5. print(round(10.8))   

6.    

7. #  even choice   

8. print(round(6.6))   



137 
 

Output: 

10 
11 
7 
 

Python issubclass() Function 

The python issubclass() function returns true if object argument(first argument) is a 
subclass of second class(second argument). 

Python issubclass() Function Example 

1. class Rectangle:   

2.   def __init__(rectangleType):   

3.     print('Rectangle is a ', rectangleType)   

4.    

5. class Square(Rectangle):   

6.   def __init__(self):   

7.     Rectangle.__init__('square')   

8.        

9. print(issubclass(Square, Rectangle))   

10. print(issubclass(Square, list))   

11. print(issubclass(Square, (list, Rectangle)))   

12. print(issubclass(Rectangle, (list, Rectangle)))   

Output: 

True 
False 
True 
True 
 

Python str 

The python str() converts a specified value into a string. 

Python str() Function Example 

1. str('4')   

Output: 



138 
 

'4' 

Python tuple() Function 

The python tuple() function is used to create a tuple object. 

Python tuple() Function Example 

1. t1 = tuple()   

2. print('t1=', t1)   

3.    

4. # creating a tuple from a list   

5. t2 = tuple([1, 6, 9])   

6. print('t2=', t2)   

7.    

8. # creating a tuple from a string   

9. t1 = tuple('Java')   

10. print('t1=',t1)   

11.    

12. # creating a tuple from a dictionary   

13. t1 = tuple({4: 'four', 5: 'five'})   

14. print('t1=',t1)   

Output: 

t1= () 
t2= (1, 6, 9) 
t1= ('J', 'a', 'v', 'a') 
t1= (4, 5) 
 

Python type() 

The python type() returns the type of the specified object if a single argument is passed 
to the type() built in function. If three arguments are passed, then it returns a new type 
object. 

Python type() Function Example 

1. List = [4, 5]   

2. print(type(List))   

3.    

4. Dict = {4: 'four', 5: 'five'}   

5. print(type(Dict))   

6.    



139 
 

7. class Python:   

8.     a = 0   

9.    

10. InstanceOfPython = Python()   

11. print(type(InstanceOfPython))   

Output: 

<class 'list'> 
<class 'dict'> 
<class '__main__.Python'> 
 

Python vars() function 

The python vars() function returns the __dict__ attribute of the given object. 

Python vars() Function Example 

1. class Python:   

2.   def __init__(self, x = 7, y = 9):   

3.     self.x = x   

4.     self.y = y   

5.      

6. InstanceOfPython = Python()   

7. print(vars(InstanceOfPython))   

Output: 

{'y': 9, 'x': 7} 
 

Python zip() Function 

The python zip() Function returns a zip object, which maps a similar index of multiple 
containers. It takes iterables (can be zero or more), makes it an iterator that aggregates 
the elements based on iterables passed, and returns an iterator of tuples. 

Python zip() Function Example 

1. numList = [4,5, 6]   

2. strList = ['four', 'five', 'six']   

3.    

4. # No iterables are passed   

5. result = zip()   



140 
 

6.    

7. # Converting itertor to list   

8. resultList = list(result)   

9. print(resultList)   

10.    

11. # Two iterables are passed   

12. result = zip(numList, strList)   

13.    

14. # Converting itertor to set   

15. resultSet = set(result)   

16. print(resultSet)   

Output: 

[] 
{(5, 'five'), (4, 'four'), (6, 'six')} 

 

Views and their use 

In relational databases, data is structured using various database objects like tables, 
stored procedure, views, clusters etc. This article aims to walk you through ‗SQL VIEW‘ 
– one of the widely-used database objects in SQL Server. 

It is a good practice to organize tables in a database to reduce redundancy and 
dependency in SQL database. Normalization is a database process for organizing the 
data in the database by splitting large tables into smaller tables. These multiple tables 
are linked using the relationships. Developers write queries to retrieve data from 
multiple tables and columns. In the query, we might use multiple joins and queries could 
become complicated and overwhelming to understand. Users should also require 
permissions on individual objects to fetch the data. 

Let‘s go ahead and see how SQL VIEW help to resolve these issues in SQL Server. 

Introduction 

A VIEW in SQL Server is like a virtual table that contains data from one or multiple 
tables. It does not hold any data and does not exist physically in the database. Similar 
to a SQL table, the view name should be unique in a database. It contains a set of 
predefined SQL queries to fetch data from the database. It can contain database tables 
from single or multiple databases as well. 

In the following image, you can see the VIEW contains a query to join three relational 
tables and fetch the data in a virtual table. 



141 
 

 

A VIEW does not require any storage in a database because it does not exist physically. 
In a VIEW, we can also control user security for accessing the data from the database 
tables. We can allow users to get the data from the VIEW, and the user does not require 
permission for each table or column to fetch data. 

Let‘s explore user-defined VIEW in SQL Server. 

Note: In this article, I am going to use sample database AdventureWorks for all 
examples. 

Create a SQL VIEW 

The syntax to create a VIEW is as follows: 

1 

2 

3 

CREATE VIEW Name AS   

Select column1, Column2...Column N From tables   

Where conditions; 



142 
 

Example 1: SQL VIEW to fetch all records of a table 

It is the simplest form of a VIEW. Usually, we do not use a VIEW in SQL Server to fetch 
all records from a single table. 

1 

2 

3 

4 

CREATE VIEW EmployeeRecords 

AS 

     SELECT * 

     FROM [HumanResources].[Employee]; 

Once a VIEW is created, you can access it like a SQL table. 

 

Example 2: SQL VIEW to fetch a few columns of a table 

We might not be interested in all columns of a table. We can specify required column 
names in the select statement to fetch those fields only from the table. 



143 
 

1 

2 

3 

4 

     CREATE VIEW EmployeeRecords 

     AS 

     SELECT NationalIDNumber,LoginID,JobTitle  

     FROM [HumanResources].[Employee]; 

Example 3: SQL VIEW to fetch a few columns of a table and filter results using WHERE 

clause 

We can filter the results using a Where clause condition in a Select statement. Suppose 
we want to get EmployeeRecords with Martial status ‗M‘. 

1 

2 

3 

4 

5 

6 

7 

8 

   CREATE VIEW EmployeeRecords 

   AS 

     SELECT NationalIDNumber,  

            LoginID,  

            JobTitle,  

            MaritalStatus 

     FROM [HumanResources].[Employee] 

     WHERE MaritalStatus = 'M'; 

Example 4: SQL VIEW to fetch records from multiple tables 

We can use VIEW to have a select statement with Join condition between multiple 
tables. It is one of the frequent uses of a VIEW in SQL Server. 



144 
 

In the following query, we use INNER JOIN and LEFT OUTER JOIN between multiple 
tables to fetch a few columns as per our requirement. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

CREATE VIEW [Sales].[vStoreWithContacts] 

  AS 

     SELECT s.[BusinessEntityID],  

            s.[Name],  

            ct.[Name] AS [ContactType],  

            p.[Title],  

            p.[FirstName],  

            p.[MiddleName],  

            p.[LastName],  

            p.[Suffix],  

            pp.[PhoneNumber],  

            ea.[EmailAddress],  

            p.[EmailPromotion] 

           FROM [Sales].[Store] s 

          INNER JOIN [Person].[BusinessEntityContact] bec ON bec.[BusinessEntityID] = s

.          [BusinessEntityID] 



145 
 

17 

18 

19 

20 

          INNER JOIN [Person].[ContactType] ct ON ct.[ContactTypeID] = bec. 

          [ContactTyp 

          eID] 

          INNER JOIN [Person].[Person] p ON p.[BusinessEntityID] = bec.[PersonID] 

          LEFT OUTER JOIN [Person].[EmailAddress] ea ON ea.[BusinessEntityID] = p.[Bu

sinessEntityID] 

          LEFT OUTER JOIN [Person].[PersonPhone] pp ON pp.[BusinessEntityID] = p.[Bu

sinessEntityID]; 

GO 

Suppose you need to execute this query very frequently. Using a VIEW, we can simply 
get the data with a single line of code. 

1 select * from  [Sales].[vStoreWithContacts] 

 



146 
 

Example 5: SQL VIEW to fetch specific column 

In the previous example, we created a VIEW with multiple tables and a few column from 
those tables. Once we have a view, it is not required to fetch all columns from the view. 
We can select few columns as well from a VIEW in SQL Server similar to a relational 
table. 

In the following query, we want to get only two columns name and contract type from 
the view. 

1 

2 

3 

       SELECT Name,  

       ContactType 

       FROM [Sales].[vStoreWithContacts]; 

Example 6: Use Sp_helptext to retrieve VIEW definition 

We can use sp_helptext system stored procedure to get VIEW definition. It returns the 
complete definition of a SQL VIEW. 

For example, let‘s check the view definition for EmployeeRecords VIEW. 

 

We can use SSMS as well to generate the script for a VIEW. Expand database -> Views 
-> Right click and go to Script view as -> Create To -> New Query Editor Window. 



147 
 

 

 

Overviews of ORACLE 

If you are a user of Oracle E-Business Suite and are continuing to have problems with 
your master data, then it probably goes back to the time when you first implemented it. 
It is not an uncommon problem. Most systems integrators did not pay too much 
attention to data quality. However, you are now left holding the bag. You are the one 
that is dealing with the consequences of poor data quality in your day to day operations. 
It is not too late. Read about our story to understand why you can still fix the problem. It 
would help you appreciate why an MDM program will NOT cost you an arm and a leg 
and it will help you build a business case much easier than to justify a seven-figure 
investment. It will also help you appreciate that if your waiting for the Cloud to magically 
solve all problems, then it is not going to happen. If you solve the problem now, it will 
also help you move to the cloud. 

Our story started in 1995 when we were tasked with implementing Oracle ERP at 
Lucent Microelectronics ( AT&T Microelectronics then) in Allentown, PA. We were 
required to integrate all their internal factories, foundries and Sub Contractors into a 
single instance to be the single source of truth for the entire company. 

While Oracle has the deep capability for business processes and inter department 
integration, it is easily susceptible to bad data. That would destroy the objective of the 
entire ERP implementation. Good data is at the heart of timely, reliable, accurate, and 



148 
 

complete information and is the bedrock of data-oriented decision making. Good Master 
data, is a prerequisite for good data. To generate good master data, the following 
attributes are mandatory. 

1. Easy User Interface 
 

2. Real time error checking to enforce policies and constraints 
 

3. Approvals to ensure stakeholders signoff 
 

4. No Latency between the time the data is created and its consumption in  
downstream transactions 
 

5. No gaps between data in the ERP and data in the MDM. 

To meet these objectives, we built a custom solution for them and it was for the product 
domain. Subsequently, when we implemented the same ERP for Sony 
Semiconductor in Japan, we decided to build a framework that could handle multiple 
business entities such as Product, Customer, Supplier, GL account, Cost Center, 
Location, People etc., 

Since Sony Semiconductor went live, many other customers have used Triniti‘s MDM to 
create and maintain high quality master data. They include Qualcomm, Power 
Integrations, DSPG and Peregrine Semiconductor. 

With Triniti‘s MDM you can achieve the benefits of zero latency enterprise to make 
faster, and reliable decision making. Armed with error-free transactions in your 
ERP,CRM, etc, you will be able to avoid pitfalls of not meeting program expectations. 

By using Triniti‘s MDM you can achieve the following functionality: 

 Model your master data for applications other than Oracle and SFDC as well 
 

 Model additional complex hierarchies that represent your master data 
 

 Set your own policies and constraints, other than that are required by Oracle and 
SFDC which are already builtin 
 

 Validate foreign keys with member applications directly without replicating in the 
MDM 
 

 Do data quality checks 
 

 Integrate with other applications in real time using industry standard protocols 
 

 Enforce authorship 
 

https://www.triniti.com/sites/default/files/casestudies/TPM%20Sony%20Case%20Study.pdf?download=1
https://www.triniti.com/sites/default/files/casestudies/TPM%20Sony%20Case%20Study.pdf?download=1
https://www.triniti.com/oracle-master-data-management-software#ebs-adm
https://www.triniti.com/oracle-master-data-management-software#ebs-cdm
https://www.triniti.com/oracle-ebs-supplier-data-management
https://www.triniti.com/oracle-ebs-gl-account-master-data-management
https://www.triniti.com/sites/default/files/casestudies/Qualcomm-facilitates-collaboration-among-supply-chain-teams.pdf?download=1
https://www.triniti.com/sites/default/files/casestudies/DSPG_achieves_enhanced_business_agility_using_TPM.pdf?download=1
https://www.triniti.com/mdmzle
https://www.triniti.com/content/mdmadmalanguage


149 
 

 Execute survivorship in member applications 
 

 Define required workflows and approvals 
 

 Get data quality metrics 
 

 Configure 360-degree views of your domains 

Summary 

Since we have solved the problem, you can leverage our experience and our tools. The 
integration is 100% reusable and is robust. The backbone is a framework and not a 
custom solution. It has continued to evolve as technology has evolved, that is illustrated 
by our ability to integrate with SFDC and demonstrate that we can quickly adapt to the 
Cloud. This is what enables you to acquire industrial strength MDM capabilities at a very 
affordable price from us. We also save you considerable time during implementation by 
reading YOUR configuration and not just configuration based on the VISION database. 
If you do not solve the problem now, then not only will you continue to bear the 
consequences of poor data quality, but you will either carry it to the cloud, or will impede 
your move to the cloud. On the other hand if you do it now, then your move to the cloud 
will be clean. You would stilll have to worry about MDM being a part of cloud, but if you 
go with us, we will ensure that we are integrated to your cloud platform as well. 

Triniti MDM provides out-of-the-box support for Oracle E-Business suite and SFDC for 
Product, Customer, Supplier, and GL Chart of accounts structure including GL Account 
and Cost Center. Check back! We will update our content as we release more domains. 

To make your job easier, we also provide the following tools: 

1. An ROI Calculator. 
2. A Vendor evaluation form. 

Data definition and manipulation 

DBMS software primarily functions as an interface between the end user and the 

database, simultaneously managing the data, the database engine, and the database 

schema in order to facilitate the organization and manipulation of data. 

Though functions of DBMS vary greatly, general-purpose DBMS features and 

capabilities should include: a user accessible catalog describing metadata, DBMS 

library management system, data abstraction and independence, data security, logging 

and auditing of activity, support for concurrency and transactions, support for 

authorization of access, access support from remote locations, DBMS data recovery 

support in the event of damage, and enforcement of constraints to ensure the data 

follows certain rules. 

A database schema design technique that functions to increase clarity in organizing 

data is referred to as normalization. Normalization in DBMS modifies an existing 

https://www.triniti.com/project-business-case-roi-calculators-excel
https://www.triniti.com/vendor-evaluation-toolkit


150 
 

schema to minimize redundancy and dependency of data by splitting a large table into 

smaller tables and defining the relationship between them. DBMS Output is a built-in 

package SQL in DBMS that enables the user to display debugging information and 

output, and send messages from subprograms, packages, PL/SQL blocks, and triggers. 

Oracle originally developed the DBMS File Transfer package, which provides 

procedures to copy a binary file within a database or to transfer a binary file between 

databases. 

A database management system functions through the use of system commands, first 

receiving instructions from a database administrator in DBMS, then instructing the 

system accordingly, either to retrieve data, modify data, or load existing data from the 

system. Popular DBMS examples include cloud-based database management 

systems, in-memory database management systems (IMDBMS), columnar database 

management systems (CDBMS), and NoSQL in DBMS. 

RDBMS vs DBMS 

A relational database management system (RDBMS) refers to a collection of programs 

and capabilities that is designed to enable the user to create, update, and administer 

a relational database, which is characterized by its structuring of data into logically 

independent tables. There are several features that distinguish a Relational DBMS from 

a DBMS, including: 

 Structure: Where data is structured in hierarchical form in a DBMS, data is 
structured in tabular form in a RDBMS. 
 

 User capacity: A RDBMS is capable of operating with multiple users. DBMS can 
only manage one user at a time. 
 

 Software/hardware requirements: A RDBMS has greater software and 
hardware requirements. 
 

 Programs managed: DBMS maintains databases within the computer network 
and system hard disks. A RDBMS manages the relationships between its 
incorporated tables of data. 
 

 Data capacity: A DBMS is capable of managing small amounts of data and a 
RDBMS can manage an unlimited amount of data. 
 

 Distributed databases: A DBMS does not provide support for distributed 
databases while a RDBMS does. 
 

 ACID implementation: A RDBMS bases the structure of its data on the ACID 
(Atomicity, Consistency, Isolation, and Durability) model. 
 

https://www.omnisci.com/technical-glossary/in-memory-database
https://www.omnisci.com/technical-glossary/relational-database


151 
 

Difference Between Data and Information in DBMS 

Data is raw, unprocessed, unorganized facts that are seemingly random and do not yet 

carry any significance or meaning. Information refers to data that has been organized, 

interpreted, and contextualized by a human or machine so that it possess relevance and 

purpose. 

Information is filtered data that has been made systematic and useful, and is considered 

to be more reliable and valuable to researchers as proper analysis and refinement has 

been conducted. A DBMS is concerned with the manipulation of data in a database. 

Difference Between Data Models in DBMS 

A data model is an abstract model that organizes elements of data, documents the way 

data is stored and retrieved, standardizes how different data elements relate to one 

another and to the properties of real-world entities, and designs the responses needed 

for information system requirements. There are three main types of DBMS data models: 

relational, network, and hierarchical. 

 Relational data model: Data is organized as logically independent tables. 
 Network data model: All entities are organized in graphical representations. 
 Hierarchical data model: Data is organized into a tree-like structure. 

Other data models include entity-relationship, record base, object-oriented, object 

relation, semi-structured, associative, context, and flat data models. Database system 

architecture in DBMS is categorized as either single tier, in which the DBMS is the only 

entity where the user directly sits on the DBMS and uses it, or multi-tier, in which nearly 

all components are independent and can be changed independently. 

Features of Distributed Database Management System 

A distributed database is a collection of related data in multiple interconnected 

databases that are logically interrelated, but physically stored across multiple physical 

locations. Distributed databases are categorized as either homogeneous, in which all 

the physical locations use the same hardware and run the same operating systems and 

applications, or heterogeneous, in which each location may have different data, 

software, and hardware structures. 

A distributed database management system (DDBMS) refers to a centralized 

application that functions to create and manipulate distributed databases, synchronize 

the database at regular intervals and provide transparent access mechanisms to the 

user, ensure universal application of data modifications, maintain data security and 

integrity of the database, can be accessed by several users simultaneously, and is used 

in applications that process large volumes of data. 

 



152 
 

How is a DBMS Different from a Traditional File System? 

A traditional filing system refers to early endeavors to computerize the manual filing 

system. File-based systems typically use storage devices such as a CD-ROM or hard 

disk to store and organize computer files and the data within with the goal of facilitating 

easy access. 

A traditional file system is inexpensive, ideal for a small system with smaller quantity of 

parts, very low design efforts, isolated data, and has a simple backup system, but is not 

secure, has a lack of flexibility and many limitations, and has integrity flaws. 

The benefits of DBMS over a traditional file system include: good for large systems, 

data-sharable, flexible, has data integrity, and has a complex backup system. DBMS 

data security requirements leverage the use of masking, tokenization, encryption, 

access control lists, permissions, firewalls, and virtual private networks, making data 

storage and querying in DBMS a far more secure option than in a traditional file system. 

Does OmniSci Offer a DBMS Solution? 

The analytics platform is the solution designed to compensate for the inadequacies of 

the relational database management system, working in tandem with various data 

processing techniques to address the increasing demands of users in large, data-driven 

industries. While so much of today‘s data is now location-enriched, geospatial-specific 

processes in GIS tools are becoming too slow for today's data volumes. OmniSci 

bridges this divide by making geospatial intelligence (GEOINT) capabilities a first-class 

citizen of our accelerated analytics platform. 

 

 

 

 

 

 

 

 

 

https://www.omnisci.com/platform
https://www.omnisci.com/industry
https://www.omnisci.com/industry
https://www.omnisci.com/role/omnisci-for-geospatial-analysts
https://www.omnisci.com/technical-glossary/gis
https://www.omnisci.com/technical-glossary/geoint-geospatial-intelligence


153 
 

Unit - V 

 

 

Database Security, Integrity and Control 

Security and Integrity threats 

In this chapter, we will look into the threats that a database system faces and the 
measures of control. We will also study cryptography as a security tool. 

Database Security and Threats 

Data security is an imperative aspect of any database system. It is of particular 
importance in distributed systems because of large number of users, fragmented and 
replicated data, multiple sites and distributed control. 

Threats in a Database 

 Availability loss −  
 
Availability loss refers to non-availability of database objects by legitimate users. 

 Integrity loss −  
 
Integrity loss occurs when unacceptable operations are performed upon the 
database either accidentally or maliciously. This may happen while creating, 
inserting, updating or deleting data. It results in corrupted data leading to 
incorrect decisions. 

 Confidentiality loss −  
 
Confidentiality loss occurs due to unauthorized or unintentional disclosure of 
confidential information. It may result in illegal actions, security threats and loss 
in public confidence. 

Measures of Control 

The measures of control can be broadly divided into the following categories − 

 Access Control −  
 
Access control includes security mechanisms in a database management 
system to protect against unauthorized access. A user can gain access to the 
database after clearing the login process through only valid user accounts. Each 
user account is password protected. 



154 
 

 Flow Control −  
 
Distributed systems encompass a lot of data flow from one site to another and 
also within a site. Flow control prevents data from being transferred in such a 
way that it can be accessed by unauthorized agents. A flow policy lists out the 
channels through which information can flow. It also defines security classes for 
data as well as transactions. 

 Data Encryption −  
 
Data encryption refers to coding data when sensitive data is to be 
communicated over public channels. Even if an unauthorized agent gains 
access of the data, he cannot understand it since it is in an incomprehensible 
format. 

What is Cryptography? 

Cryptography is the science of encoding information before sending via unreliable 
communication paths so that only an authorized receiver can decode and use it. 

The coded message is called cipher text and the original message is called plain text. 
The process of converting plain text to cipher text by the sender is called encoding 
or encryption. The process of converting cipher text to plain text by the receiver is 
called decoding or decryption. 

The entire procedure of communicating using cryptography can be illustrated through 
the following diagram − 

 

 



155 
 

 
 
Conventional Encryption Methods 

In conventional cryptography, the encryption and decryption is done using the same 
secret key. Here, the sender encrypts the message with an encryption algorithm using 
a copy of the secret key. The encrypted message is then send over public 
communication channels. On receiving the encrypted message, the receiver decrypts it 
with a corresponding decryption algorithm using the same secret key. 

Security in conventional cryptography depends on two factors − 

 A sound algorithm which is known to all. 

 A randomly generated, preferably long secret key known only by the sender and 
the receiver. 

The most famous conventional cryptography algorithm is Data Encryption 
Standard or DES. 

The advantage of this method is its easy applicability. However, the greatest problem 
of conventional cryptography is sharing the secret key between the communicating 
parties. The ways to send the key are cumbersome and highly susceptible to 
eavesdropping. 

Public Key Cryptography 

In contrast to conventional cryptography, public key cryptography uses two different 
keys, referred to as public key and the private key. Each user generates the pair of 
public key and private key. The user then puts the public key in an accessible place. 
When a sender wants to sends a message, he encrypts it using the public key of the 
receiver. On receiving the encrypted message, the receiver decrypts it using his private 
key. Since the private key is not known to anyone but the receiver, no other person 
who receives the message can decrypt it. 

The most popular public key cryptography algorithms are RSA algorithm and Diffie– 
Hellman algorithm. This method is very secure to send private messages. However, 
the problem is, it involves a lot of computations and so proves to be inefficient for long 
messages. 

The solution is to use a combination of conventional and public key cryptography. The 
secret key is encrypted using public key cryptography before sharing between the 
communicating parties. Then, the message is send using conventional cryptography 
with the aid of the shared secret key. 

Digital Signatures 

A Digital Signature (DS) is an authentication technique based on public key 
cryptography used in e-commerce applications. It associates a unique mark to an 



156 
 

individual within the body of his message. This helps others to authenticate valid 
senders of messages. 

Typically, a user‘s digital signature varies from message to message in order to provide 
security against counterfeiting. The method is as follows − 

 The sender takes a message, calculates the message digest of the message 
and signs it digest with a private key. 

 The sender then appends the signed digest along with the plaintext message. 

 The message is sent over communication channel. 

 The receiver removes the appended signed digest and verifies the digest using 
the corresponding public key. 

 The receiver then takes the plaintext message and runs it through the same 
message digest algorithm. 

 If the results of step 4 and step 5 match, then the receiver knows that the 
message has integrity and authentic. 

 

 Defense mechanism 

Database security encompasses a range of security controls designed to protect the 
Database Management System (DBMS). The types of database security measures your 
business should use include protecting the underlying infrastructure that houses the 
database such as the network and servers), securely configuring the DBMS, and the 
access to the data itself. 

Database security controls 

Database security encompasses multiple controls, including system hardening, access, 
DBMS configuration, and security monitoring. These different security controls help to 
manage the circumventing of security protocols. 

System hardening and monitoring 

The underlying architecture provides additional access to the DBMS. It is vital that all 
systems are patched consistently, hardened using known security configuration 
standards, and monitored for access, including insider threats. 

DBMS configuration 

It is critical that the DBMS be properly configured and hardened to take advantage of 
security features and limit privileged access that may cause a misconfiguration of 
expected security settings. Monitoring the DBMS configuration and ensuring proper 
change control processes helps ensure that the configuration stays consistent. 



157 
 

Authentication 

Database security measures include authentication, the process of verifying if a user‘s 
credentials match those stored in your database, and permitting only authenticated 
users access to your data, networks, and database platform. 

Access 

A primary outcome of database security is the effective limitation of access to your data. 
Access controls authenticate legitimate users and applications, limiting what they can 
access in your database. Access includes designing and granting appropriate user 
attributes and roles and limiting administrative privileges. 

Database auditing 

Monitoring (or auditing) actions as part of a database security protocol delivers 
centralized oversight of your database. Auditing helps to detect, deter, and reduce the 
overall impact of unauthorized access to your DBMS. 

Backups 

A data backup, as part of your database security protocol, makes a copy of your data 
and stores it on a separate system. This backup allows you to recover lost data that 
may result from hardware failures, data corruption, theft, hacking, or natural disasters. 

Encryption 

Database security can include the secure management of encryption keys, protection of 
the encryption system, management of a secure, off-site encryption backup, and access 
restriction protocols. 

Application security 

Database and application security framework measures can help protect against 
common known attacker exploits that can circumvent access controls, including SQL 
injection. 

Why is database security important? 
 

Safeguarding the data your company collects and manages is of utmost importance. 
Database security can guard against a compromise of your database, which can lead to 



158 
 

financial loss, reputation damage, consumer confidence disintegration, brand erosion, 
and non-compliance of government and industry regulation. 

Database security safeguards defend against a myriad of security threats and can help 
protect your enterprise from: 
 

 Deployment failure 
 

 Excessive privileges 
 

 Privilege abuse 
 

 Platform vulnerabilities 
 

 Unmanaged sensitive data 
 

 Backup data exposure 
 Weak authentication 

 
 Database injection attacks 

 

Auditing and Control 

A simple definition for what a database management system (DBMS) is, would be that 

it is a complex set of software programs that control the organization, storage and 

retrieval of data in a database.  It also controls the security and integrity of the 

database. 

This article will not attempt to give a detailed explanation of database technology, 
rather it will serve to introduce the IT auditor to some of the concepts that will be 
necessary to be understood and performed to support an audit of a DBMS. 

But first, in order to understand DBMS there is some database terminology and 
definitions you will need to understand: 

 Concurrency Control – Refers to the class of controls used in database management 
systems (DBMS) to ensure that transactions are processed in an atomic, consistent, 
isolated and durable manner (ACID).  This implies that only serial and recoverable 
schedules are permitted, and that committed transactions are not discarded when 
undoing aborted transactions. 

 Data Structure – The relationships among files in a database and among data items 
within each file. 

 Database – A stored collection of related data needed by organizations and 
individuals to meet their information processing and retrieval requirements. 

https://info.looker.com/looker-101/what-gdpr-means-for-your-business-data-strategies


159 
 

 Database Administrator (DBA) – An individual or department responsible for the 
security and information classification of the shared data stored on a database 
system.  This responsibility includes the design, definition and maintenance of the 
database. 

 Database Specifications – These are the requirements for establishing a database 
application.  They include field definitions, field requirements, and reporting 
requirements for the individual information in the database. 

 Foreign Key – A foreign key is a value that represents a reference to a tuple (a row in 
a table) containing the matching candidate key value (in the relational theory it would 
be a candidate key, but in real DBMS implementations it is always the primary 
key).  The problem of ensuring that the database does not include any invalid foreign 
key values is therefore known as the referential integrity problem.  The constraint that 
values of a given foreign key must match values of the corresponding candidate key is 
known as a referential constraint.  The relation (table) that contains the foreign key is 
referred as the referencing relation and the relations that contain the corresponding 
candidate key as the referenced relation or target relation. 

 Normalization – The elimination of redundant data. 

 Repository – The central database that stores and organizes data. 

 Transaction log – A manual or automated log of all updates to data files and 
databases. 

 Tuple – A tuple is a row in a database table. 

When we speak about Database Management Systems (DBMS), there are three basic 
types: 

 Hierarchical – a database structured in a tree/root or parent/child relationship.  Each 
parent can have many children; however, each child may have only one parent. 

 Network – the basic data modeling construct is called a set.  A set is formed by an 
owner record type, a member record type and a name.  A member record type can 
have that role in more than one set, so a multi-owner relationship is allowed.  An 
owner record type can also be a member or owner in another set.  Usually, a set 
defines a 1:N relationship, although one-to-one (1:1) is permitted.  A disadvantage of 
the network model is that such structures can be extremely complex and difficult to 
comprehend, modify or reconstruct in case of failure. 

 Relational – This model is based on the set theory and relational calculations.  A 
relational database allows the definition of data structures, storage/retrieval operations 
and integrity constraints.  In such a database the data and relationships among these 
data are organized in tables.  A table is a collection of rows, also known as tuples, and 
each tuple in a table contains the same number of columns.  Columns, called domains 
or attributes, correspond to fields.  Tuples are equal to records in a conventional file 
structure. 

Relational tables have the following characteristics: 

http://cyberconsecurity.com/wbt/DBS/glossary/index.html
http://www.waziziest.blogspot.com/
http://www.waziziest.blogspot.com/


160 
 

 Values are atomic 

 Each row is unique 

 Column values are of the same kind 

 The sequence of columns is insignificant 

 The sequence of rows is insignificant 

 Each column has a unique name 

Some of the advantages of the relational model over the hierarchical and network 
model are that it is easier: 

 For users to understand and implement a physical database system 

 To convert from other database structures 

 To implement projection and join operations 

 To create new relations for applications 

 To implement access control over sensitive data 

 To modify the data base 

When auditing the controls of a database, the auditor would check to see that the 
following controls have been implemented and maintained to ensure database 
integrity and availability: 

 Definition standards 

 Data backup and recovery procedures 

 Access controls 

 Only authorized personnel can update the database 

 Controls to handle concurrent access problems such as multiple users trying to update 
the same record at the same time 

 Controls to ensure the accuracy, completeness and consistency of data elements and 
relationships. 

 Checkpoints to minimize data loss 

 Database re-organizations 

 Monitoring database performance 

 Capacity planning 

 Who can access the database without going through the application? 

When we speak of who can access the database, we have already identified one of 
the major audit concerns and that is what access does the DBA have?  As everyone 
knows the DBA basically has the ―keys to the kingdom‖ and can do (read, write, 



161 
 

change, delete) anything.  What you have to make sure of is that someone is 
watching.  Someone is monitoring (logging) the actions the DBA takes.  And the DBA, 
doesn‘t have the ability to de-activate the log nor do they have access to the log. 

It goes without saying that Access Control is the number one issue with database 
management systems.  That being said let‘s not forget to audit disaster recovery and 
restoration, patch management, change management, incident logging and all the 
other issues an auditor should look for. 

There is another issue that auditors need to deal with when auditing DBMS and that is 
to perform some type of data integrity testing.  Data integrity testing is a set of 
substantive tests (NOTE: Substantive not Compliance testing) that examines 
accuracy, completeness, consistency and authorization of data presently held in a 
system.  There are two common types of data integrity tests; relational and 
referential.  Relational integrity tests are performed at the data element and record-
based levels.  It is enforced through data validation routines built into the application 
or by defining the input condition constraints and data characteristics at the table 
definition in the database stage.  Sometimes it is a combination of both. 

Referential integrity test define existence relationships between entities in different 
tables of a database that needs to be maintained by the DBMS.  Referential integrity 
checks involve ensuring that all references to a primary key from another table 
actually exist in their original table. 

With respect to data integrity in online transaction processing systems there are four 
online data integrity requirements known collectively as the ACID principle.  For those 
of you that are old enough to remember ACID, congratulations, your brain isn‘t 
completed fried. 

The ―A‖ stands for atomicity and from a user‘s perspective, a transaction is either 
completed in its entirety or not at all. 

The ―C‖ stands for consistency.  Basically, all integrity conditions in the database are 
maintained with each transaction, taking the database from one consistent state into 
another consistent state. 

The ―I‖ stands for isolation.  Each transaction is isolated from other transactions and 
hence each transaction only accesses data that are part of a consistent database 
state. 

The ―D‖ stands for durability.  If a transaction has been reported back to a user as 
complete, the resulting changes to the database survive subsequent hardware of 
software failures. 

As a parting comment, I would be remiss, if I didn‘t mention how the database was 
populated in a test environment.  As many times as I have audited databases, I have 



162 
 

found that the production environment was being copied to the test environment to 
ensure an accurate copy so that changes would not fail once they were moved to 
production.  At least that was the logical in the client‘s explanation.  What they fail to 
realize is that the security controls in test are significantly weaker that they are in 
production and yet there is a mirror unprotected copy sitting there for all to see. 

At least as an auditor, you should recommend that the data be sanitized before being 
used in test. 

I hope you‘ve enjoyed this brief overview of DBMS and have an appreciation of some 
things you might check as an auditor. 

Recent trends in DBMS 

Concepts in database management hardly fall in the category of come-and-go, as the 
cost of shifting between technical approaches overwhelms producers, managers, and 
designers. However, there are several trends in database management, and knowing 
how to take advantage of them will benefit your organization. Following are the some of 
the current trends: 

1. Databases that bridge SQL/NoSQL 

The latest trends in database products are those that don‘t simply embrace a single 
database structure. Instead, the databases bridge SQL and NoSQL, giving users the 
best capabilities offered by both. This includes products that allow users to access a 
NoSQL database in the same way as a relational database, for example. 

2. Databases in the cloud/Platform as a Service 
As developers continue pushing their enterprises to the cloud, organizations are 
carefully weighing the trade-offs associated with public versus private. Developers are 
also determining how to combine cloud services with existing applications and 
infrastructure. Providers of cloud service offer many options to database administrators. 
Making the move towards the cloud doesn‘t mean changing organizational priorities, but 
finding products and services that help your group meet its goals. 

3. Automated management 
Automating database management is another emerging trend. The set of such 
techniques and tools intend to simplify maintenance, patching, provisioning, updates 
and upgrades — even project workflow. However, the trend may have limited 
usefulness since database management frequently needs human intervention. 

4. An increased focus on security 
While not exactly a trend given the constant focus on data security, recent ongoing retail 
database breaches among US-based organizations show with ample clarity the 
importance for database administrators to work hand-in-hand with their IT security 
colleagues to ensure all enterprise data remains safe. Any organization that stores data 
is vulnerable. 
Database administrators must also work with the security team to eliminate potential 
internal weaknesses that could make data vulnerable. These could include issues 



163 
 

related to network privileges, even hardware or software misconfigurations that could be 
misused, resulting in data leaks. 

5. In-memory databases 
Within the data warehousing community there are similar questions about columnar 
versus row-based relational tables; the rise of in-memory databases, the use of flash or 
solid-state disks (which also applies within transaction processing), clustered versus no-
clustered solutions and so on. 

6. Big Data 
To be clear, big data does not necessarily mean lots of data. What it really refers to is 
the ability to process any type of data: what is typically referred to as semi-structured 
and unstructured data as well as structured data. Current thinking is that these will 
typically live alongside conventional solutions as separate technologies, at least in large 
organisations, but this will not always be the case. 

 
Integrating Trends 

 
Projects involving databases should not be viewed and appreciated solely on how they 
adhere to these trends. Ideally, each tool or process available should merge in some 
meaningful way with existing operations. It is important to look of these trends as items 
that can coincide: enhancing security and moving to the cloud coexist? 

 

Distributed and Deductive Database 

Distributed Database:- This chapter introduces the concept of DDBMS. In a 
distributed database, there are a number of databases that may be geographically 
distributed all over the world. A distributed DBMS manages the distributed database in 
a manner so that it appears as one single database to users. In the later part of the 
chapter, we go on to study the factors that lead to distributed databases, its 
advantages and disadvantages. 

A distributed database is a collection of multiple interconnected databases, which are 
spread physically across various locations that communicate via a computer network. 

Features 

 Databases in the collection are logically interrelated with each other. Often they 
represent a single logical database. 

 Data is physically stored across multiple sites. Data in each site can be managed 
by a DBMS independent of the other sites. 

 The processors in the sites are connected via a network. They do not have any 
multiprocessor configuration. 

 A distributed database is not a loosely connected file system. 



164 
 

 A distributed database incorporates transaction processing, but it is not 
synonymous with a transaction processing system. 

Distributed Database Management System 

A distributed database management system (DDBMS) is a centralized software system 
that manages a distributed database in a manner as if it were all stored in a single 
location. 

Features 

 It is used to create, retrieve, update and delete distributed databases. 

 It synchronizes the database periodically and provides access mechanisms by 
the virtue of which the distribution becomes transparent to the users. 

 It ensures that the data modified at any site is universally updated. 

 It is used in application areas where large volumes of data are processed and 
accessed by numerous users simultaneously. 

 It is designed for heterogeneous database platforms. 

 It maintains confidentiality and data integrity of the databases. 

Factors Encouraging DDBMS 

The following factors encourage moving over to DDBMS − 

 Distributed Nature of Organizational Units −  
 
Most organizations in the current times are subdivided into multiple units that 
are physically distributed over the globe. Each unit requires its own set of local 
data. Thus, the overall database of the organization becomes distributed. 

 Need for Sharing of Data −  
 
The multiple organizational units often need to communicate with each other 
and share their data and resources. This demands common databases or 
replicated databases that should be used in a synchronized manner. 

 Support for Both OLTP and OLAP −  
 
Online Transaction Processing (OLTP) and Online Analytical Processing 
(OLAP) work upon diversified systems which may have common data. 
Distributed database systems aid both these processing by providing 
synchronized data. 

 Database Recovery −  
 
One of the common techniques used in DDBMS is replication of data across 



165 
 

different sites. Replication of data automatically helps in data recovery if 
database in any site is damaged. Users can access data from other sites while 
the damaged site is being reconstructed. Thus, database failure may become 
almost inconspicuous to users. 

 Support for Multiple Application Software −  
 
Most organizations use a variety of application software each with its specific 
database support. DDBMS provides a uniform functionality for using the same 
data among different platforms. 

Advantages of Distributed Databases 

Following are the advantages of distributed databases over centralized databases. 

Modular Development −  
 
If the system needs to be expanded to new locations or new units, in centralized 
database systems, the action requires substantial efforts and disruption in the existing 
functioning. However, in distributed databases, the work simply requires adding new 
computers and local data to the new site and finally connecting them to the distributed 
system, with no interruption in current functions. 

More Reliable −  
 
In case of database failures, the total system of centralized databases comes to a halt. 
However, in distributed systems, when a component fails, the functioning of the system 
continues may be at a reduced performance. Hence DDBMS is more reliable. 

Better Response −  
 
If data is distributed in an efficient manner, then user requests can be met from local 
data itself, thus providing faster response. On the other hand, in centralized systems, 
all queries have to pass through the central computer for processing, which increases 
the response time. 

Lower Communication Cost −  
 
In distributed database systems, if data is located locally where it is mostly used, then 
the communication costs for data manipulation can be minimized. This is not feasible in 
centralized systems. 

Adversities of Distributed Databases 

Following are some of the adversities associated with distributed databases. 

 Need for complex and expensive software −  
 



166 
 

DDBMS demands complex and often expensive software to provide data 
transparency and co-ordination across the several sites. 

 Processing overhead −  
 
Even simple operations may require a large number of communications and 
additional calculations to provide uniformity in data across the sites. 

 Data integrity −  
 
The need for updating data in multiple sites pose problems of data integrity. 

 Overheads for improper data distribution −  
 
Responsiveness of queries is largely dependent upon proper data distribution. 
Improper data distribution often leads to very slow response to user requests. 

 

Deductive Database:-   
 
A deductive database is a finite collection of facts and rules. By applying the rules of a 
deductive database to the facts in the database, it is possible to infer additional facts, 
i.e. facts that are implicitly true but are not explicitly represented in the database. 

This paper is a brief introduction to deductive databases. In the first section, we talk 
about traditional databases, i.e. sets of simple facts. After that, we introduce logic 
programs, i.e. sets of rules. We then show how to use rules in defining views of a 
database, in writing constraints on the database, and in defining updates to the 
database. We close with a brief discussion of special, built-in functions and relations. 

2. Databases 

When we think about the world, we usually think in terms of objects and relationships 
among these objects. Objects include things like people and offices and buildings. 
Relationships include things like the parenthood, ancestry, office assignments, office 
locations, and so forth. 

In sentential databases, we encode each instance of a relationship in the form of 
a sentence consisting of a relation constant representing the relationship and 
some terms representing the objects involved in the instance. 

The vocabulary of a database is a collection of object constants, function constants, and 
relation constants. Each function constant and relation constant has an associated arity, 
i.e. the number of objects involved in any instance of the corresponding function or 
relation. 



167 
 

A term is either a symbol or a functional term. A functional term is an expression 
consisting of an n-ary function constant and n terms. In what follows, we write functional 
terms in traditional mathematical notation - the function followed by 
its arguments enclosed in parentheses and separated by commas. For example, if f is a 
binary function constant and if a and b are object constants, 
then f(a,a) and f(a,b) and f(b,a) and f(b,b) are all functional terms. Functional terms can be 
nested within other functional terms. For example, if f(a,b) is a functional term, then so 
is f(f(a,b),b). 

A datum is an expression formed from an n-ary relation constant and n terms. We write 
data in mathematical notation. For example, we might write parent(art,bob) to express the 
fact that Art is the parent of Bob. 

A dataset is any set of data that can be formed from the vocabulary of a database. 
Intuitively, we can think of the data in a dataset as the facts that we believe to be true in 
the world; data that are not in the dataset are assumed to be false. 

As an example of these concepts, consider a small interpersonal database. The objects 
in this case are people. The relationships specify properties of these people and their 
interrelationships. 

In our example, we use the binary relation constant parent to specify that one person is a 
parent of another. The sentences below constitute a database describing six instances 
of the parent relation. The person named art is a parent of the person named bob; art is 
also a parent of bea, and so forth. 

parent(art,bob) 

parent(art,bea) 

parent(bob,carl) 

parent(bea,coe) 

parent(carl,daisy) 

parent(carl,daniel) 

The adult relation is unary relation, i.e. a simple property of a person, not a relationship 
other people. Everyone in our database is an adult except for daisy and daniel. 

adult(art) 



168 
 

adult(bob) 

adult(bea) 

adult(carl) 

adult(coe) 

We can express gender with two unary relation constants male and female. The following 
data expresses the genders of all of the people in our database. Note that, in principle, 
we need only one relation here, since one gender is the complement of the other. 
However, representing both allows us to enumerate instances of both gender equally 
efficiently, which can be useful in certain applications. 

male(art) 
 

female(bea) 

male(bob) 
 

female(coe) 

male(cal) 
 

female(daisy) 

male(daniel) 
  

As an example of a ternary relation, consider the data shown below. Here, we 
use prefers to represent the fact that the first person likes the second person more than 
the third person. For example, the first sentence says that Art prefers bea to bob; the 
second sentence says that carl prefers daisy to daniel. 

prefers(art,bea,bob) 

prefers(carl,daisy,daniel) 

Note that the order of arguments in such sentences is arbitrary. Given the meaning of 
the prefers relation in our example, the first argument denotes the subject, the second 
argument is the person who is preferred, and the third argument denotes the person 
who is less preferred. We could equally well have interpreted the arguments in other 
orders. The important thing is consistency - once we choose to interpret the arguments 
in one way, we must stick to that interpretation everywhere. 



169 
 

 

3. Logic Programs 

The rules in a deductive database are often called a logic program. The language of 
logic programs includes the language of databases but provides additional expressive 
features. 

One key difference is the inclusion of a new type of symbol, called a variable. Variables 
allow us to state relationships among objects without explicitly naming those objects. In 
what follows, we use individual capital letters as variables, e.g. X, Y, Z. 

In the context of logic programs, a term is defined as an object constant, a variable, or a 
functional term, i.e. an expression consisting of an n-ary function constant and n simpler 
terms. 

An atom in a logic program is analogous to a datum in a database except that the 
constituent terms may include variables. 

A literal is either an atom or a negation of an atom (i.e. an expression stating that the 
atom is false). A simple atom is called a positive literal, The negation of an atom is 
called a negative literal. In what follows, we write negative literals using the negation 
sign ~. For example, if p(a,b) is an atom, then ~p(a,b) denotes the negation of this atom. 

A rule is an expression consisting of a distinguished atom, called the head and a 
conjunction of zero or more literals, called the body. The literals in the body are 
called subgoals. In what follows, we write rules as in the example shown below. 
Here, r(X,Y) is the head, p(X,Y) & ~q(Y) is the body; and p(X,Y) and ~q(Y) are subgoals. 

r(X,Y) :- p(X,Y) & ~q(Y) 

Semantically, a rule is something like a reverse implication. It is a statement that the 
conclusion of the rule is true whenever the conditions are true. For example, the rule 
above states that r is true of any object X and any object Y if p is true of X and Y and q is 
not true of Y. For example, if we know p(a,b) and we know that q(b) is false, then, using 
this rule, we can conclude that r(a,b) must be true. 

Exercise: Click here to test your understanding of rule syntax. 

A logic program is a finite set of atoms and rules as just defined. In order to simplify our 
definitions and analysis, we occasionally talk about infinite sets of rules. While these 
sets are useful, they are not themselves logic programs. 

http://logic.stanford.edu/jarvis/complaw/ddb_01.html


170 
 

Unfortunately, the language of rules, as defined so far, allows for logic programs with 
some unpleasant properties. To avoid programs of this sort, it is common in deductive 
databases to add a couple of restrictions that together eliminate these problems. 

The first restriction is safety. A rule in a logic program is safe if and only if every variable 
that appears in the head or in any negative literal in the body also appears in at least 
one positive literal in the body. A logic program is safe if and only if every rule in the 
program is safe. 

All of the examples above are safe. By contrast, the two rules shown below are not 
safe. The first rule is not safe because the variable Z appears in the head but does not 
appear in any positive subgoal. The second rule is not safe because the 
variable Z appears in a negative subgoal but not in any positive subgoal. 

s(X,Y,Z) :- p(X,Y) 

t(X,Y) :- p(X,Y) & ~q(Y,Z) 

To see why safety is matters in the case of the first rule, suppose we had a database in 
which p(a,b) is true. Then, the body of the first rule is satisfied if we let X be a and Y be b. 
In this case, we can conclude that every corresponding instance of the head is true. But 
what should we substitute for Z? Intuitively, we could put anything there; but there could 
be infinitely many possibilities. For example, we could write any number there. While 
this is conceptually okay, it is practically problematic. 

To see why safety matters in the second rule, suppose we had a database with just two 
facts, viz. p(a,b) and q(b,c). In this case, if we let X be a and Y be b and Z be anything 
other than c, then both subgoals true, and we can conclude t(a,b). The main problem 
with this is that many people incorrectly interpret that negation as meaning there is 
no Z for which q(Y,Z) is true, whereas the correct reading is that q(Y,Z) needs to be false 
for just one binding of Z. As we will see in our examples below, there is a simple way of 
expressing this other meaning without writing unsafe rules. 

In logic programming, these problems are avoided by requiring all rules to be safe. 
While this does restrict what one can say, the good news is that it is usually possible to 
ensure safety by adding additional subgoals to rules to ensure that the restrictions are 
satisfied. 

Exercise: Click here to test your understanding of the concept of safety. 

The second restriction is called stratified negation. It is essential in order to avoid 
ambiguities. Unfortunately, it is a little more difficult to understand than safety. 

The dependency graph for a logic program is a directed graph with two type of 
arcs, positive and negative. The nodes in the dependency graph for a program 

http://logic.stanford.edu/jarvis/complaw/ddb_02.html


171 
 

represent the relations in the program. There is a positive arc in the graph from one 
node to another if and only if the former node appears in a positive subgoal of a rule in 
which the latter node appears in the head. There is a negative arc from one node to 
another if and only if the former node appears in a negative subgoal of a rule in which 
the latter node appears in the head. 

As an example, consider the following logic program. r(X,Y) is true if p(X,Y) and q(Y) are 
true. s(X,Y) is true if r(X,Y) is true and s(Y,X) is false. 

r(X,Y) :- p(X,Y) & q(Y) 

s(X,Y) :- r(X,Y) & ~s(Y,X) 

The dependency graph for this program contains nodes for p, q, r, and s. Due to the first 
rule, there is a positive arc from p to r and a positive arc from q to r. Due to the second 
rule, there is a positive arc from r to s and a negative arc from s to itself. 

A negation in a logic program is said to be stratified with respect to negation if and only 
if there is no negative arc in any cycle in the dependency graph. The logic program just 
shown is not stratified with respect to negation because there is a cycle involving a 
negative arc. 

The problem with unstratified logic programs is that there is a potential ambiguity. As an 
example, consider the program above and assume we had a database 
containing p(a,b), p(b,a), q(a), and q(b). From these facts we can 
conclude r(a,b) and r(b,a) are both true. So far so good. But what can we say about s? If 
we take s(a,b) to be true and s(b,a) to be false, then the second rule is satisfied. If we 
take s(a,b) to be false and s(b,a) to be true, then the second rule is again satisfied. We 
can also take them both to be true. The upshot is that there is ambiguity about s. By 
concentrating exclusively on programs that are stratified with respect to negation, we 
avoid such ambiguities. 

Exercise: Click here to test your understanding of the concept of stratified negation. 

It is common in logic programming to require that all logic programs be both safe and 
stratified with respect to negation. The restrictions are easy to satisfy in most 
applications; and, by obeying these restrictions, we ensure that our logic programs 
produce finite, unambiguous answers for all questions. 

4. View Definitions 

The principle use of rules is to define new relations in terms of existing relations. The 
new relations defined in this way are often called view relations (or simply views) to 
distinguish them from base relations, which are defined by explicit enumeration of 
instances. 

http://logic.stanford.edu/jarvis/complaw/ddb_03.html


172 
 

To illustrate the use of rules in defining views, consider once again the world of 
interpersonal relations. Starting with the base relations, we can define various 
interesting view relations. 

As an example, consider the sentences shown below. The first sentence defines 
the father relation in terms of parent and male. The second sentence defines mother in 
terms of parent and female. 

father(X,Y) :- parent(X,Y) & male(X) 

mother(X,Y) :- parent(X,Y) & female(X) 

The rule below defines the grandparent relation in terms of the parent relation. A 
person X is the grandparent of a person Z if X is the parent of a person Y and Y is the 
parent of Z. The variable Y here is a thread variable that connects the first subgoal to the 
second but does not itself appear in the head of the rule. 

grandparent(X,Z) :- parent(X,Y) & parent(Y,Z) 

Note that the same relation can appear in the head of more than one rule. For example, 
the person relation is true of a person Y if there is an X such that X is the parent 
of Y or if Y is the parent of some person Z. Note that in this case the conditions are 
disjunctive (at least one must be true), whereas the conditions in the grandfather case 
are conjunctive (both must be true). 

person(X) :- parent(X,Y) 

person(Y) :- parent(X,Y) 

A person X is an ancestor of a person Z if X is the parent of Z or if there is a 
person Y such that X is an ancestor of and Y is an ancestor of Z. This example shows 
that is possible for a relation to appear in its own definition. (But recall our discussion of 
stratification for a restriction on this capability.) 

ancestor(X,Y) :- parent(X,Y) 

ancestor(X,Z) :- ancestor(X,Y) & ancestor(Y,Z) 

A childless person is one who has no children. We can define the property of being 
childless with the rules shown below. The first rule states that a person X is childless 



173 
 

if X is a person and it is not the case that X is a parent. The second rule says 
that isparent is true of X if X is the parent of some person Y. 

childless(X) :- person(X) & ~isparent(X,Y) 

isparent(X) :- parent(X,Y) 

Note the use of the helper relation isparent here. It is tempting to write the childless rule 
as childless(X) :- person(X) & ~parent(X,Y). However, this would be wrong. This would 
define X to be childless if X is a person and there is some Y such that X is ~parent(X,Y) is 
true. But we really want to say that ~parent(X,Y) holds for all Y. Defining isparent and using 
its negation in the definition of childless allows us to express this universal quantification. 

5. Errors and Warnings 

In our development thus far, we have assumed that the extension of an n-ary relation 
may be any set of n-tuples from the domain. This is rarely the case. Often, there 
are constraints that limit the set of possibilities. For example, a person cannot be his 
own parent. In some cases, constraints involve multiple relations. For example, all 
parents are adults; in other words, if an entity appears in the first column of 
the parent relation, it must also appear as an entry in the adult relation. 

In many database texts, constraints are written in direct form - by writing rules that say, 
in effect, that if certain things are true in an extension, then other things must also be 
true. The inclusion dependency mentioned above is an example - if an entity appears in 
the first column of the parent relation, it must also appear as an entry in the adult relation. 

In what follows, we use a slightly less direct approach - we encode limitations by writing 
rules that say when a database is not well-formed. We simply invent a new 0-ary 
relation, here called illegal, and define it to be true in any extension that does not satisfy 
our constraints. 

This approach works particularly well for consistency constraints like the one stating that 
a person cannot be his own parent. 

illegal :- parent(X,X) 

It also works well for mutual exclusion constraints like the one below, which states that a 
person cannot be in both the male and the female relations. 

illegal :- male(X) & female(X) 

Using this technique, we can also write the inclusion dependency mentioned earlier. 
There is an error if an entity is in the first column of the parent relation and it does not 
occur in the adult relation. 



174 
 

illegal :- parent(X,Y) & ~adult(X) 

Database management systems can use such constraints in a variety of ways. They 
can be used to optimize the processing of queries. They can also be used to check that 
updates do not lead to unacceptable extensions. 

6. Updates 

In updating a database, a user specifies a sentence to add to a database or a 
sentences to delete. In some cases, the user can group several changes of this sort in a 
single, so-called, atomic transaction. If the result of executing the transaction satisfies 
the constraints, the update is performed; otherwise it is rejected. 

Unfortunately, if a user forgets to include an addition or deletion required by the 
constraints, this can lead to errors. In order to simplify the update process for the user, 
some database systems provide the administrator the ability to write update rules, i.e. 
rules that are executed by the system to augment a specified transaction with the 
additions and deletions necessary to avoid errors. In what follows, we show one way 
that this can be done 

Our update language includes four special operators - pluss, minus, pos, and neg. pluss 
takes a sentence as argument and is true if and only if the user specifies that sentence 
as an addition in a transaction. minus takes a sentence as argument and is true if and 
only if the user specifies that sentence as an addition in a transaction. pos takes a 
sentence as argument and is true if and only if the system concludes that the specified 
sentence should be added to the database. neg takes a sentence as argument and is 
true if and only if the system concludes that the specified sentence should be added to 
the database. Update rules are rules that define pos and neg in terms of pluss and 
minus and the current state of the database. 

As an example of this mechanism in action, consider the rules shown below. The first 
dictates that the system remove a sentence of the form male(X) whenever the user adds 
a sentence of the form female(X). The second rule is analogous to the first 
with male and female reversed. Together, these two rules enforce the mutual exclusion 
on male and female. 

neg(male(X)) :- pluss(female(X)) 

neg(female(X)) :- pluss(male(X)) 

Similarly, we can enforce the inclusion dependency on parent and adult by writing the 
following rule. If the user adds a sentence of the form parent(X,Y), then the system also 
adds a sentence of the form adult(X). 



175 
 

pos(adult(X)) :- pluss(parent(X,Y)) 

Another use of this update mechanism is to maintain materialized views. (A materialized 
view is a defined relation that is stored explicitly in the database, usually to save 
recomputation.) 

Suppose, for example, we were to materialize the father relation defined earlier. Then we 
could write the update rules to maintain this materialized view. According to the first 
rule, the system should add a sentence of the form father(X,Y) whenever the user 
adds parent(X,Y) and male(X) is know to be true and the user does not delete that fact. 
The other rules cover the other cases. 

pos(father(X,Y)) :- pluss(parent(X,Y)) & male(X) & ~minus(male(X)) 
 

pos(father(X,Y)) :- parent(X,Y) & pluss(male(X)) & ~minus(parent(X,Y)) 
 

pos(father(X,Y)) :- pluss(parent(X,Y)) & pluss(male(X)) 
 

neg(father(X,Y)) :- minus(parent(X,Y)) 
 

neg(father(X,Y)) :- minus(male(X)) 
 

Note that not all constraints can be enforced using update rules. For example, if a user 
suggests adding the sentence parent(art,art) to the database in our interpersonal relations 
example, there is nothing the system can do to repair this error except to reject the 
transaction. In some cases, there is no way to make a repair unambiguously; more 
information is needed from the user. For example, we might have a constraint that every 
person is in either the male or the female relation. If the user specifies a parent fact 
involving a new person but does not specify the gender of that person, there is no way 
for the system to decide that gender for itself. 

7. Special Relations 

In practical logic programming languages, it is common to "build in" commonly used 
concepts. These typically include arithmetic functions (such as +, *, max, min), string 
functions (such as concatenation), comparison operators (such as < and >), and equality 
(=). It is also common to include aggregate operators, such as countofall, avgofall sumofall, 
and so forth. 

In many practical logic programming languages, mathematical functions are 
represented as relations. For example, the the binary addition operator + is often 
represented by the the ternary relation constant plus. For example, the following rule 



176 
 

defines the combined age of two people. The combined age of X and Y is S if the age 
of X is M and the age of Y is N and S is the result of adding M andN. 

combinedage(X,Y,S) :- age(X,M) & age(Y,N) & plus(M,N,S) 

Similarly, aggregate operators are typically represented as relations. For example the 
following rule defines the number of a person's grandchildren using the countofall relation 
in this way. N is the number of grandchildren of X if N is the count of all Z such that X is 
the grandparent of Z. 

grandchildren(X,N) :- person(X) & countofall(Z,grandparent(X,Z),N) 

In logic programming languages that provide such built-in concepts, there are usually 
syntactic restrictions on their use. For example, if a rule contains a subgoal with a 
comparison relation, then every variable that occurs in that subgoal must occur in at 
least one positive literal in the body and that occurrence must precede the subgoal with 
the comparison relation. If a rule mentions an arithmetic function, then any variable that 
occurs in all but the last position of that subgoal must occur in at least one positive 
literal in the body and that occurrence must precede the subgoal with the arithmetic 
relation. 

 

 


